NAG Fortran Library Manual
Mark 18

Volume 2

D01 — DO2N

D01 - Quadrature
D02 - Ordinary Differential Equations (cont’d in Volume 3)

NAG Fortran Library Manual, Mark 18
@©The Numerical Algorithms Group Limited, 1997

All rights reserved. No part of this manual may be reproduced, transcribed, stored in a retrieval
system, translated into any language or computer language or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, without the prior written
permission of the copyright owner.

The copyright owner gives no warranties and makes no representations about the contents of this
manual and specifically disclaims any implied warranties or merchantability or fitness for any

purpose.

The copyright owner reserves the right to revise this manual and to make changes from time to
time in its contents without notifying any person of such revisions or changes.

Printed and produced by NAG
1st Edition — September 1997 ISBN 1-85206-147-2

NAG is a registered trademark of:
The Numerical Algorithms Group Limited
The Numerical Algorithms Group Inc
The Numerical Algorithms Group (Deutschland) GmbH

NAG Ltd

Wilkinson House

Jordan Hill Road

OXFORD

United Kingdom 0X2 8DR

Tel: +44 (0)1865 511245
Fax: +44 (0)1865 310139

NAG GmbH NAG Inc

SchleiBheimerstrafie 5 1400 Opus Place, Suite 200
D-85748 Garching Downers Grove, IL 60515-5702
Deutschland USA

Tel: +49 (0)89 3207395 Tel: +1 630 971 2337

Fax: +49 (0)89 3207396 Fax: +1 630 971 2706

NAG also has a number of distributors throughout the world. Please contact NAG for further
details.

[NP3086/18]

Chapter D01 — Quadrature

Note. Please refer to the Users’ Note for your implementation to check that a routine is available.

Routine Mark of

Name Introduction Purpose

DO1AHF 8 1-D quadrature, adaptive, finite interval, strategy due to Patterson,
suitable for well-behaved integrands

DO1AJF 8 1-D quadrature, adaptive, finite interval, strategy due to Piessens and
de Doncker, allowing for badly-behaved integrands

DO1AKF 8 1-D quadrature, adaptive, finite interval, method suitable for oscillating
functions

DO1ALF 8 1-D quadrature, adaptive, finite interval, allowing for singularities at
user-specified break-points

DO1AMF 8 1-D quadrature, adaptive, infinite or semi-infinite interval

DO1ANF 8 1-D quadrature, adaptive, finite interval, weight function cos(wz) or
sin(wz)

DO1APF 8 1-D quadrature, adaptive, finite interval, weight function with end-point
singularities of algebraico-logarithmic type

DO1AQF 8 1-D quadrature, adaptive, finite interval, weight function 1/(z — ¢),
Cauchy principal value (Hilbert transform)

DO1ARF 10 1-D quadrature, non-adaptive, finite interval with provision for indefinite
integrals

DO1ASF 13 1-D quadrature, adaptive, semi-infinite interval, weight function cos(wz)
or sin(wz)

DO1ATF 13 1-D quadrature, adaptive, finite interval, variant of DO1AJF efficient on
vector machines

DO1AUF 13 1-D quadrature, adaptive, finite interval, variant of DO1AKF efficient on
vector machines

DO1BAF 7 1-D Gaussian quadrature

DO1BBF 7 Pre-computed weights and abscissae for Gaussian quadrature rules,
restricted choice of rule

DO1BCF 8 Calculation of weights and abscissae for Gaussian quadrature rules,
general choice of rule

DO1BDF 8 1-D quadrature, non-adaptive, finite interval

DO1DAF 5 2-D quadrature, finite region

DO1EAF 12 Multi-dimensional adaptive quadrature over hyper-rectangle, multiple
integrands

DO1FBF 8 Multi-dimensional Gaussian quadrature over hyper-rectangle

DO1FCF 8 Multi-dimensional adaptive quadrature over hyper-rectangle

DO1FDF 10 Multi-dimensional quadrature, Sag-Szekeres method, general product
region or n-sphere

DO1GAF 5 1-D quadrature, integration of function defined by data values, Gill-
Miller method

DO1GBF 10 Multi-dimensional quadrature over hyper-rectangle, Monte Carlo
method

DO1GCF 10 Multi-dimensional quadrature, general product region, number-theoretic
method

DO1GDF 14 Multi-dimensional quadrature, general product region, number-theoretic
method, variant of DO1GCF efficient on vector machines

DO1GYF 10 Korobov optimal coefficients for use in DO1GCF or D01GDF, when
number of points is prime

DO1GZF 10 Korobov optimal coefficients for use in DO1GCF or DO1GDF, when

number of points is product of two primes

DO1JAF 10 Multi-dimensional quadrature over an n-sphere, allowing for badly-
behaved integrands
DO1PAF 10 Multi-dimensional quadrature over an n-simplex

D01 - Quadrature Introduction — D01

Chapter D01

Quadrature
Contents
1 Scope of the Chapter 2
2 Background to the Problems 2
2.1 One-dimensional Integrals oo 2
2.2 Multi-dimensional Integrals 3
3 Recommendations on Choice and Use of Available Routines 5
3.1 One-dimensional Integrals over a Finite Interval 5
3.2 One-dimensional Integrals over a Semi-infinite or Infinite Interval 6
3.3 Multi-dimensional Integrals L 7
4 Decision Trees 10
5 References 12

[NP3086/18] DO1.1

Introduction — D01 D01 - Quadrature

1 Scope of the Chapter

This chapter provides routines for the numerical evaluation of definite integrals in one or more dimensions
and for evaluating weights and abscissae of integration rules.

2 Background to the Problems

The routines in this chapter are designed to estimate:

(a) the value of a one-dimensional definite integral of the form:

/,, ' f(e) da (1)

where f(z) is defined by the user, either at a set of points (z;, f(z;)), for i = 1,2,...,n where
a=z,<2,<...<2, = b, or in the form of a function; and the limits of integration a, b may be

finite or infinite.

Some methods are specially designed for integrands of the form

f(z) = w(z)g(2) (2)

which contain a factor w(z), called the weight-function, of a specific form. These methods take full
account of any peculiar behaviour attributable to the w(z) factor.

(b) the values of the one-dimensional indefinite integrals arising from (1) where the ranges of integration
are interior to the interval [a, b].

(c) the value of a multi-dimensional definite integral of the form:

/ f(z,,zq,...,2,)dz, ... dz,dz, (3)
Rn

where f(z,2z5,...,2,) is a function defined by the user and R,, is some region of n-dimensional
space.

The simplest form of R,, is the n-rectangle defined by
a,s.’tl_<_b', i=1,2,...,n (4)

where a; and b; are constants. When a; and b; are functions of z; (j < 1), the region can easily
be transformed to the rectangular form (see Davis and Rabinowitz [1], page 266). Some of the
methods described incorporate the transformation procedure.

2.1 One-dimensional Integrals

To estimate the value of a one-dimensional integral, a quadrature rule uses an approximation in the form
of a weighted sum of integrand values, 1.e.,

b N
[1@ de =Y uiste))

The points z; within the interval [a, b] are known as the abscissae, and the w; are known as the weights.

More generally, if the integrand has the form (2), the corresponding formula is

b N
/ w(z)g(z) de =Y wg(z;). (6)
a i=1

If the integrand is known only at a fixed set of points, these points must be used as the abscissae, and
the weighted sum is calculated using finite-difference methods. However, if the functional form of the
integrand is known, so that its value at any abscissa 1s easily obtained, then a wide variety of quadrature
rules are available, each characterised by its choice of abscissae and the corresponding weights.

D01.2 [NP3086/18]

D01 - Quadrature Introduction - D01

The appropriate rule to use will depend on the interval [a, b] — whether finite or otherwise — and on the
form of any w(z) factor in the integrand. A suitable value of N depends on the general behaviour of
f(z); or of g(z), if there is a w(z) factor present.

Among possible rules, we mention particularly the Gaussian formulae, which employ a distribution of
abscissae which is optimal for f(z) or g(z) of polynomial form.

The choice of basic rules constitutes one of the principles on which methods for one-dimensional integrals
may be classified. The other major basis of classification is the implementation strategy, of which some
types are now presented.

(a) Single rule evaluation procedures

A fixed number of abscissae, N, is used. This number and the particular rule chosen uniquely
determine the weights and abscissae. No estimate is made of the accuracy of the result.

(b) Automatic procedures

The number of abscissae, N, within [a,b] is gradually increased until consistency is achieved to
within a level of accuracy (absolute or relative) requested by the user. There are essentially two
ways of doing this; hybrid forms of these two methods are also possible:

(i) whole interval procedures (non-adaptive)

A series of rules using increasing values of N are successively applied over the whole interval
[a,b]. It is clearly more economical if abscissae already used for a lower value of N can be used
again as part of a higher-order formula. This principle is known as optimal extension. There is
no overlap between the abscissae used in Gaussian formulae of different orders. However, the
Kronrod formulae are designed to give an optimal (2N + 1)-point formula by adding (N + 1)
points to an N-point Gauss formula. Further extensions have been developed by Patterson.

(i1) adaptive procedures

The interval [a,b] is repeatedly divided into a number of sub-intervals, and integration rules
are applied separately to each sub-interval. Typically, the subdivision process will be carried
further in the neighbourhood of a sharp peak in the integrand, than where the curve is smooth.
Thus, the distribution of abscissae is adapted to the shape of the integrand.

Subdivision raises the problem of what constitutes an acceptable accuracy in each sub-interval.
The usual global acceptability criterion demands that the sum of the absolute values of the
error estimates in the sub-intervals should meet the conditions required of the error over the
whole interval. Automatic extrapolation over several levels of subdivision may eliminate the
effects of some types of singularities.

An ideal general-purpose method would be an automatic method which could be used for a wide variety
of integrands, was efficient (i.e., required the use of as few abscissae as possible), and was reliable (i.e.,
always gave results to within the requested accuracy). Complete reliability is unobtainable, and generally
higher reliability is obtained at the expense of efficiency, and vice versa. It must therefore be emphasised
that the automatic routines in this chapter cannot be assumed to be 100% reliable. In general, however,
the reliability is very high.

2.2 Multi-dimensional Integrals

A distinction must be made between cases of moderately low dimensionality (say, up to 4 or 5 dimensions),
and those of higher dimensionality. Where the number of dimensions is limited, a one-dimensional
method may be applied to each dimension, according to some suitable strategy, and high accuracy may
be obtainable (using product rules). However, the number of integrand evaluations rises very rapidly with
the number of dimensions, so that the accuracy obtainable with an acceptable amount of computational
labour is limited; for example a product of 3-point rules in 20 dimensions would require more than 10°
integrand evaluations. Special techniques such as the Monte Carlo methods can be used to deal with
high dimensions.

[NP3086/18] D01.3

Introduction — D01 D01 - Quadrature

(a) Products of one-dimensional rules

Using a two-dimensional integral as an example, we have

by pbe
/ fry)dydr~zw { fz,,y)dy] (7
b1 pba
[[rew dyde =Y wioy flen,) (8)
61 Va2 i=1j=1
where (w;,z;) and (v;,y;) are the weights and abscissae of the rules used in the respective

dimensions.

A different one-dimensional rule may be used for each dimension, as appropriate to the range and
any weight function present, and a different strategy may be used, as appropriate to the integrand
behaviour as a function of each independent variable.

For a rule-evaluation strategy in all dimensions, the formula (8) is applied in a straightforward
manner. For automatic strategies (i.e., attempting to attain a requested accuracy), there is a
problem in deciding what accuracy must be requested in the inner integral(s). Reference to formula
(7) shows that the presence of a limited but random error in the y-integration for different values of
z; can produce a ‘jagged’ function of z, which may be difficult to integrate to the desired accuracy
and for this reason products of automatic one-dimensional routines should be used with caution
(see also Lyness [3]).

(b) Monte Carlo methods

These are based on estimating the mean value of the integrand sampled at points chosen from an
appropriate statistical distribution function. Usually a variance reducing procedure is incorporated
to combat the fundamentally slow rate of convergence of the rudimentary form of the technique.
These methods can be effective by comparison with alternative methods when the integrand contains
singularities or is erratic in some way, but they are of quite limited accuracy.

(¢) Number theoretic methods

These are based on the work of Korobov and Conroy and operate by exploiting implicitly the
properties of the Fourier expansion of the integrand. Special rules, constructed from so-called
optimal coefficients, give a particularly uniform distribution of the points throughout n-dimensional
space and from their number theoretic properties minimize the error on a prescribed class of
integrals. The method can be combined with the Monte Carlo procedure.

(d) Sag-Szekeres method

By transformation this method seeks to induce properties into the integrand which make it
accurately integrable by the trapezoidal rule. The transformation also allows effective control over
the number of integrand evaluations.

(e) Automatic adaptive procedures

An automatic adaptive strategy in several dimensions normally involves division of the region into
subregions, concentrating the divisions in those parts of the region where the integrand is worst
behaved. It is difficult to arrange with any generality for variable limits in the inner integral(s).
For this reason, some methods use a region where all the limits are constants; this is called a
hyper-rectangle. Integrals over regions defined by variable or infinite limits may be handled by
transformation to a hyper-rectangle. Integrals over regions so irregular that such a transformation
is not feasible may be handled by surrounding the region by an appropriate hyper-rectangle and
defining the integrand to be zero outside the desired region. Such a technique should always be
followed by a Monte Carlo method for integration.

The method used locally in each subregion produced by the adaptive subdivision process is usually
one of three types: Monte Carlo, number theoretic or deterministic. Deterministic methods are
usually the most rapidly convergent but are often expensive to use for high dimensionality and not
as robust as the other techniques.

DO1.4 [NP3086/18]

D01 - Quadrature Introduction — D01

3 Recommendations on Choice and Use of Available Routines

Note. Refer to the Users’ Note for your implementation to check that a routine is available.

The following three sub-sections consider in turn routines for: one-dimensional integrals over a finite
interval, and over a semi-infinite or an infinite interval; and multi-dimensional integrals. Within each
sub-section, routines are classified by the type of method, which ranges from simple rule evaluation to
automatic adaptive algorithms. The recommendations apply particularly when the primary objective is
simply to compute the value of one or more integrals, and in these cases the automatic adaptive routines
are generally the most convenient and reliable, although also the most expensive in computing time.

Note however that in some circumstances it may be counter-productive to use an automatic routine. If
the results of the quadrature are to be used in turn as input to a further computation (e.g. an ‘outer’
quadrature or an optimization problem), then this further computation may be adversely affected by the
‘jagged performance profile’ of an automatic routine; a simple rule-evaluation routine may provide much
better overall performance. For further guidance, the article by Lyness [3] is recommended.

3.1 One-dimensional Integrals over a Finite Interval

(a) Integrand defined at a set of points

If f(z) is defined numerically at four or more points, then the Gill-Miller finite difference method
(DO1GAF) should be used. The interval of integration is taken to coincide with the range of z-
values of the points supplied. It is in the nature of this problem that any routine may be unreliable.
In order to check results independently and so as to provide an alternative technique the user may
fit the integrand by Chebyshev series using EO2ADF and then use routines EO2AJF and E02AKF
to evaluate its integral (which need not be restricted to the range of the integration points, as is
the case for DO1GAF). A further alternative is to fit a cubic spline to the data using E02BAF and
then to evaluate its integral using E02BDF.

(b) Integrand defined as a function

If the functional form of f(z) is known, then one of the following approaches should be taken. They
are arranged in the order from most specific to most general, hence the first applicable procedure
in the list will be the most efficient. However, if the user does not wish to make any assumptions
about the integrand, the most reliable routines to use will be DO1AJF (or DO1ATF) and D01AHF,
although these will in general be less efficient for simple integrals.

(i) Rule-evaluation routines

If f(z) is known to be sufficiently well behaved (more precisely, can be closely approximated
by a polynomial of moderate degree), a Gaussian routine with a suitable number of abscissae
may be used.

DO1BAF may be used if it is not required to examine the weights and abscissae.

DO01BBF or D01BCF with DO1FBF may be used if it is required to examine the weights and
abscissae.

DO1BBF is faster and more accurate, whereas DO1BCF is more general.

If f(z) is well behaved, apart from a weight-function of the form

c

a0 o (b= 2)(z - a)f,

T —

D01BCF with DO1FBF may be used.
(ii) Automatic whole-interval routines

If f(z) is reasonably smooth, and the required accuracy is not too high, the automatic
whole-interval routines, DO1ARF or DO1BDF may be used. DO1ARF incorporates high-order
extensions of the Kronrod rule and is the only routine which can also be used for indefinite
integration.

[NP3086/18] D01.5

Introduction — D01 D01 - Quadrature

(iii) Automatic adaptive routines

Firstly, several routines are available for integrands of the form w(z)g(z) where g(z) is a
‘smooth’ function (i.e., has no singularities, sharp peaks or violent oscillations in the interval
of integration) and w(z) is a weight function of one of the following forms:

if w(z) = (b—x)%(z— a)? (log(b — z))*(log(z — a))!, where k,l=0or 1, o, 8 > —1: use
DO1APF;

if w(z) = 2=: use DOLAQF (this integral is called the Hilbert transform of g);

if w(z) = cos(wz) or sin(wz): use DOIANF (this routine can also handle certain types of

singularities in g(z)).

Secondly, there are some routines for general f(z). If f(z) is known to be free of singularities,
though it may be oscillatory, DOIAKF or DOIAUF may be used.

The most powerful of the finite interval integration routines are DO1AJF and DO1ATF, which
can cope with singularities of several types, and DO1AHF. They may be used if none of
the more specific situations described above applies. DO1AHF is likely to be more efficient,
whereas DO1AJF and DO1ATF are somewhat more reliable, particularly where the integrand
has singularities other than at an end-point, or has discontinuities or cusps, and is therefore
recommended where the integrand is known to be badly behaved, or where its nature is
completely unknown. It may sometimes be useful to use both routines as a check.

Most of the routines in this chapter require the user to supply a function or subroutine to
evaluate the integrand at a single point. DOIATF and DO1AUF use the same methods as
DO1AJF and DO1AKF respectively, but have a different user-interface which can result in
faster execution, especially on vector-processing machines (see Gladwell [2]). They require the
user to provide a subroutine to return an array of values of the integrand at each of an array of
points. This reduces the overhead of function calls, avoids repetition of computations common
to each of the integrand evaluations, and offers greater scope for vectorisation of the user’s
code.

If f(z) has singularities of certain types, discontinuities or sharp peaks occurring at known
points, the integral should be evaluated separately over each of the subranges or DOIALF may
be used.

3.2 One-dimensional Integrals over a Semi-infinite or Infinite Interval

(2) Integrand defined at a set of points

If f(z) is defined numerically at four or more points, and the portion of the integral lying outside
the range of the points supplied may be neglected, then the Gill-Miller finite difference method,
D01GAF, should be used. S

(b) Integrand defined as a function

DO01.6

(i) Rule evaluation routines

If f(z) behaves approximately like a polynomial in z, apart from a weight function of the form

eP% 3 > 0 (semi-infinite interval, lower limit finite); or
e~P% B < 0 (semi-infinite interval, upper limit finite); or
e'p(”"”)?, B > 0 (infinite interval);

or if f(z) behaves approximately like a polynomial in (z + b)~! (semi-infinite range), then the
Gaussian routines may be used.

DO1BAF may be used if it is not required to examine the weights and abscissae.

DO1BBF or D01BCF with DO1FBF may be used if it is required to examine the weights and
abscissae.

DO1BBEF is faster and more accurate, whereas DO1BCF is more general.

[NP3086/18]

D01 - Quadrature Introduction — D01

(ii) Automatic adaptive routines

DO1AMF may be used, except for integrands which decay slowly towards an infinite end-
point, and oscillate in sign over the entire range. For this class, it may be possible to calculate
the integral by integrating between the zeros and invoking some extrapolation process (see
CO6BAF).

DO1ASF may be used for integrals involving weight functions of the form cos(wz) and sin(wz)
over a semi-infinite interval (lower limit finite).

The following alternative procedures are mentioned for completeness, though their use will
rarely be necessary.

1. Ifthe integrand decays rapidly towards an infinite end-point, a finite cut-off may be chosen,
and the finite range methods applied.

2. If the only irregularities occur in the finite part (apart from a singularity at the finite
limit, with which DOIAMF can cope), the range may be divided, with DOIAMF used on
the infinite part.

3. A transformation to finite range may be employed, e.g.

1-t¢

z= or r=—log,t

will transform (0, 00) to (1,0) while for infinite ranges we have
oo {e o]
| 1@ dz= [@)+ f-o) o
—00

If the integrand behaves badly on (—oo,0) and well on (0,00) or vice versa it is better
0 00

to compute it as / f(z) dz + / f(z) dz. This saves computing unnecessary function
-0 0

values in the semi-infinite range where the function is well behaved.

3.3 Multi-dimensional Integrals

A number of techniques are available in this area and the choice depends to a large extent on the
dimension and the required accuracy. It can be advantageous to use more than one technique as a
confirmation of accuracy particularly for high dimensional integrations. Many of the routines incorporate
the transformation procedure REGION which allows general product regions to be easily dealt with in
terms of conversion to the standard n-cube region.

(a) Products of one-dimensional rules (suitable for up to about 5 dimensions)

If f(z,,2,,...,%,) is known to be a sufficiently well behaved function of each variable z;, apart
possibly from weight functions of the types provided, a product of Gaussian rules may be used.
These are provided by DO1BBF or D01BCF with DO1FBF. Rules for finite, semi-infinite and infinite

ranges are included.

For two-dimensional integrals only, unless the integrand is very badly-behaved, the automatic whole-
interval product procedure of DO1DAF may be used. The limits of the inner integral may be user-
specified functions of the outer variable. Infinite limits may be handled by transformation (see
Section 3.2); end-point singularities introduced by transformation should not be troublesome, as
the integrand value will not be required on the boundary of the region.

If none of these routines proves suitable and convenient, the one-dimensional routines may be used
recursively. For example, the two-dimensional integral

b, by
1= [[Cfewdyds
ax a2

may be expressed as
by

b2
I= F(z) dz, where F(z)= f(z,y) dy.

ay a2

[NP3086/18] D01.7

Introduction - D01 D01 - Quadrature

The user segment to evaluate F(z) will call the integration routine for the y-integration, which
will call another user segment for f(z,y) as a function of y (z being effectively a constant). Note
that, as Fortran 77 is not a recursive language, a different library integration routine must be used
for each dimension. Apart from this restriction, the following combinations are not permitted:
DO01AJF and DO1ALF, DO1ANF and DO1APF, DO1APF and D01AQF, DO1AQF and DO1ANF,
DO1ASF and DO1ANF, DO1ASF and DO1AMF, DO1AUF and DOIATF. Otherwise the full range
of one-dimensional routines are available, for finite/infinite intervals, constant/variable limits, rule
evaluation/automatic strategies etc.

(b) Sag-Szekeres method

Two routines are based on this method.

DO1FDF is particularly suitable for integrals of very large dimension although the accuracy is
generally not high. It allows integration over either the general product region (with
built-in transformation to the n-cube) or the n-sphere. Although no error estimate is
provided, two adjustable parameters may be varied for checking purposes or may be
used to tune the algorithm to particular integrals.

DO1JAF is also based on the Sag—Szekeres method and integrates over the n-sphere. It uses
improved transformations which may be varied according to the behaviour of the
integrand. Although it can yield very accurate results it can only practically be
employed for dimensions not exceeding 4.

(¢) Number Theoretic method

Two routines are based on this method.

DO1GCF carries out multiple integration using the Korobov-Conroy method over a product region
with built-in transformation to the n-cube. A stochastic modification of this method
is incorporated hybridising the technique with the Monte Carlo procedure. An error
estimate is provided in terms of the statistical standard error. The routine includes a
number of optimal coefficient rules for up to 20 dimensions; others can be computed
using DO1GYF and D01GZF. Like the Sag—Szekeres method it is suitable for large
dimensional integrals although the accuracy is not high.

D01GDF uses the same method as DO1GCF, but has a different interface which can result in faster
execution, especially on vector-processing machines. The user is required to provide two
subroutines, the first to return an array of values of the integrand at each of an array
of points, and the second to evaluate the limits of integration at each of an array of
points. This reduces the overhead of function calls, avoids repetitions of computations
common to each of the evaluations of the integral and limits of integration, and offers
greater scope for vectorization of the user’s code.

(d) A combinatorial extrapolation method

DO1PAF computes a sequence of approximations and an error estimate to the integral of
a function over a multi-dimensional simplex using a combinatorial method with
extrapolation.

(e) Automatic routines (DO1GBF and D01FCF)

Both routines are for integrals of the form

by pba bn
/ / f(zy,2q,...,2,)dz, dz,_, ... dz,.
ay az an

DO1GBF is an adaptive Monte Carlo routine. This routine is usually slow and not recommended
for high-accuracy work. It is a robust routine that can often be used for low-accuracy
results with highly irregular integrands or when n is large.

DOIFCF is an adaptive deterministic routine. Convergence is fast for well behaved integrands.
Highly accurate results can often be obtained for n between 2 and 5, using significantly
fewer integrand evaluations than would be required by DO1GBF. The routine will usually
work when the integrand is mildly singular and for n < 10 should be used before
DO1GBEF. If it is known in advance that the integrand is highly irregular, it is best to
compare results from at least two different routines.

D01.8 [NP3086/18]

D01 - Quadrature Introduction - D01

There are many problems for which one or both of the routines will require large amounts of
computing time to obtain even moderately accurate results. The amount of computing time is
controlled by the number of integrand evaluations allowed by the user, and users should set this
parameter carefully, with reference to the time available and the accuracy desired.

DO1EAF extends the technique of DO1FCF to integrate adaptively more than one integrand, that
is to calculate the set of integrals

by pb2 bn
/ / (firfare- s fm) d2pdz_y - dEy
ay az Gn

for a set of similar integrands f,, f,, ..., f,, where f; = fi(zy, 29, 2,)-

[NP3086/18] D01.9

Introduction — D01 D01 - Quadrature

4 Decision Trees

(i) One-dimensional integrals over a finite interval
(If in doubt, follow the downward branch.)

i yes
Is the functional Y 1 Is indefinite integration required? DOIARF
form of the
integrand known? no
Are you concerned with efficiency for simple DO1AJF,
no integrals? % DOLATE* or
DO1AHF
DOIGAF yes
Is the integrand smooth (polynomial-like)? yes DOIAREF,
I DO1BAF or
- apart from weight function yes DO1BBF/DO1FBF
Ix—~(a+b)/2 17 or
DO01BCF/DOIFBF
no
— apart from weight function es
c d y
(b—x) (x=a) ?
no
i es
Is thfa integrand reasonably smooth and the Y DOIBDE
required accuracy not too great?
no
Has the integrand discontinuities, sharp peaks e Split the range
or singularities at known points other than the Y and begin again;
end-points? or use DO1ALF
I no
Is the integrand free of singularities, sharp peaks
and violent oscillations?
I
— apart from weight function yes
o B k l DO1APF
(b=x) " (x-a) (log(b-x)) (log(x-a)) ?
J no
— apart from weight function .xl_c ’ 2 I DOIAQF
I no
Is the integrand free of violent oscillations es
apart from weight function cos (wx) or sin Y DO1ANF
(@x)?
no
. . T yes DO1AKEF or
Is the integrand free of singularities? DO1AUF*
I no
Is the integrand free of discontinuities and of yes
singularitites except possibly at the end—points? DO1AHF
| no
DO1AJF or DO1ATF*

*DO1ATF and DO1AUF are likely to be more efficient than DO1AJF and DO1AKF, which use a more
conventional user-interface, consistent with other routines in the chapter.

D01.10 [NP3086/18]

D01 - Quadrature

(ii) One-dimensional integrals over a semi-infinite or infinite interval
(If in doubt, follow the donward branch.)

Is the

yes

functional
form of the
integrand
known?

no

DO1GAF
(integrates
over the
range of the
points
supplied)

[NP3086/18]

Introduction — D01

A-re you concerned with efficiency for no DO1AME
simple integrals?
yes
DO1BDF,
Is the integrand smooth yes DO1ARF with
(polynomial-like)? transformation
See Section 3.2.
— apart from weight function e Bx yes
(semi—infinite range)?
no
DO1BAF,
yes D01BBF/DO01FBF
~Bx—a)?
— apart from weight function e or
(infinite range)? DO01BCF/DO1FBF
no
Is the integrand polynomial-like in yes
L (semi-infinite range)?
x+b
no
Has integrand discontinuities, sharp peaks Sph,t range;
. . . yes begin again using
or singularities at known points other than -) .
o finite or infinite
a finite limit?
range trees
no
Dm'es the integrand oscillate over the no DO1AMF
entire range?
yes
Use DO1AMF;
Does the integrand decay rapidly towards yes or set cutoff
an infinite limit? and use finite
no range tree
Is the integrand free of violent
s . . yes
oscillations apart from weight function DO1ASE

cos (@) or sin (@x) (semi—infinite
range)?

no

Use finite-range integration between the
zeros, and extrapolate (see CO6BAF)

D01.11

Introduction - D01 D01 - Quadrature

(iii) Multi-dimensional integrals

Is dimension = 2 yes
AF
and product region? DoID
no DOLJAF or
es :
Is dimension < 4? Y Is region an n—sphere? yes DOIFBF w1t.h user
- transformation
no no
yes | Isregionann- - yes DOIPAF or
DO1FDF sphere? Is region a Simplex? DO1FBF with user
transformation
o no
yes . . Is the integrand smooth
DO1PAF Is region a Simplex? (polynomial-like) yes | DOIBBE/DO1FBF or
no in each dimension apart DO1BCF/DO1FBF
from weight function?
DO1FDF with yes | Ishighaccuracy 1o
parameter tuning required? - DO1FCF*,
Is integrand free of ves | DOIFDF
no extremely bad or
DO1FDF behaviour?
DOIGCF yes [T —— DoITGCF
Is dimension high?
or no
DO01GDFt no -
Is bad behaviour on yes | DO1FDF or
DO1FCF* the boundary ? DO1FCF*
no
Compare results from
at least 2 of DO1GBF,
DO1FCF*, DO1GCF,
DO1FDF and one-
dimensional recursive
application

* In the case where there are many integrals to be evaluated DO1EAF should be preferred to DO1FCF.

t DO1GDF is likely to be more efficient than DO1GCF, which uses a more conventional user-interface,
consistent with other routines in the chapter.

5 References
[1] Davis P J and Rabinowitz P (1975) Methods of Numerical Integration Academic Press

[2] Gladwell I (1986) Vectorisation of one dimensional quadrature codes Numerical Integration: Recent
Developments, and Applications (ed P Keast and G Fairweather) D Reidel Publishing Company,
Holland 231-238

[3] Lyness J N (1983) When not to use an automatic quadrature routine SIAM Rev. 25 63-87

[4] Piessens R, De Doncker-Kapenga E, Uberhuber C and Kahaner D (1983) QUADPACK, A
Subroutine Package for Automatic Integration Springer-Verlag

D01.12 [NP3086/18]

D01 - Quadrature Introduction — D01

[5] Sobol I M (1974) The Monte Carlo Method The University of Chicago Press
[6] Stroud A H (1971) Approzimate Calculation of Multiple Integrals Prentice-Hall

[NP3086,/18] D01.13 (last)

DOI — Quadrature DO01AHF

DO1AHF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

DO1AHF computes a definite integral over a finite range to a specified relative accuracy using a
method described by Patterson.

Specification
real FUNCTION DO1AHF (A, B, EPSR, NPTS, RELERR, F, NLIMIT, IFAIL)
INTEGER NPTS, NLIMIT, IFAIL
real A, B, EPSR, RELERR, F
EXTERNAL F
Description

This routine computes a definite integral of the form
b

j f(x) dx.

a

The method uses as its basis a family of interlacing high precision rules (see Patterson [1]) using
1,3,7, 15, 31, 63, 127 and 255 nodes. Initially the family is applied in sequence to the integrand.
When two successive rules differ relatively by less than the required relative accuracy, the last
rule used is taken as the value of the integral and the operation is regarded as successful. If all
rules in the family have been applied unsuccessfully, subdivision is invoked. The subdivision
strategy is as follows. The interval under scrutiny is divided into two subintervals (not always
equal). The basic family is then applied to the first subinterval. If the required accuracy is not
obtained, the interval is stored for future examination (see IFAIL = 2) and the second
subinterval is examined. Should the basic family again be unsuccessful, then the subinterval is
further subdivided and the whole process repeated. Successful integrations are accumulated as
the partial value of the integral. When all possible successful integrations have been completed,
those previously unsuccessful subintervals placed in store are examined.

A large number of refinements are incorporated to improve the performance. Some of these are:

(a) The rate of convergence of the basic family is monitored and used to make a decision to
abort and subdivide before the full sequence has been applied.

(b) The g-algorithm is applied to the basic results in an attempt to increase the convergence rate.
(See Wynn [2]).

(c) An attempt is made to detect sharp end point peaks and singularities in each subinterval and

to apply appropriate transformations to smooth the integrand. This consideration is also used
to select interval sizes in the subdivision process.

(d) The relative accuracy sought in each subinterval is adjusted in accordance with its likely
contribution to the total integral.

(e) Random transformations of the integrand are applied to improve reliability in some
instances.

References

[1] PATTERSON, T.N.L.
The Optimum Addition of Points to Quadrature Formulae.
Math. Comp., 22, pp. 847-856, 1968.

[2] WYNN,P.
On a Device for Computing the e, (S,) Transformation.
Math. Tables Aids Comp., 10, pp. 91-96, 1956.

[NP1692/14] Page 1

DO1AHF DO1 - Quadrature

S. Parameters
1: A -—real Input
On entry: the lower limit of integration, a.

22 B -real Input
On entry: the upper limit of integration, b. It is not necessary that a < b.

3: EPSR - real. Input
On entry: the relative accuracy required.
Constraint: EPSR > 0.0.

4: NPTS - INTEGER. Output
On exir: the number of function evaluations used in the calculation of the integral.

5: RELERR - real. Output
On exit: a rough estimate of the relative error achieved.

6: F —real FUNCTION, supplied by the user. External Procedure
F must return the value of the integrand f at a given point.
Its specification is:

real FUNCTION F(X)
real X

I X —real Input
On entry: the point at which the integrand must be evaluated.

F must be declared as EXTERNAL in the (sub)program from which DO1AHF is called.
Parameters denoted as Inpur must not be changed by this procedure.

7 NLIMIT — INTEGER. Input

Onentry: a limit to the number of function evaluations. If NLIMIT < 0, the routine uses a
default limit of 10,000.

8: IFAIL - INTEGER. Input/ Output

On entry: IFAIL must be set to 0, —1 or 1. Users who are unfamiliar with this parameter
should refer to Chapter P01 for details.

Onexit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL # 0
on exit, users are recommended to set IFAIL to —1 before entry. It is then essential to test
the value of IFAIL on exit. To suppress the output of an error message when soft failure
occurs, set IFAIL to 1.

6. Error Indicators and Warnings
Errors or warnings specified by the routine:
IFAIL = 1
The integral has not converged to the accuracy requested. It may be worthwhile to try
increasing NLIMIT.
IFAIL = 2
Too many unsuccessful levels of subdivision have been invoked.

Page 2 [NP1692/14]

DO1 — Quadrature DO1AHF

IFAIL = 3
On entry, EPSR < 0.0.

When IFAIL = 1 or 2 a result may be obtained by continuing without further subdivision, but
this is likely to be inaccurate.

7. Accuracy

The relative accuracy required is specified by the user in the variable EPSR. The routine will
terminate whenever the relative accuracy specified by EPSR is judged to have been reached.

If on exit, IFAIL = 0, then it is most likely that the result is correct to the specified accuracy. If,
on exit, [FAIL = 1 or IFAIL = 2, then it is likely that the specified accuracy has not been
reached.

RELERR is a rough estimate of the relative error achieved. It is a by-product of the computation
and is not used to effect the termination of the routine. The outcome of the integration must be
judged by the value of IFAIL.

8. Further Comments

The time taken by the routine depends on the complexity of the integrand and the accuracy
required.

9. Example
The following program evaluates the integral to a requested relative accuracy of 107

1
j 42dx=7r.
01+x

9.1. Program Text

Note: the listing of the exampic program presented below uscs bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO1AHF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters .
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Local Scalars
real A, ANS, B, EPSR, RELERR
INTEGER IFAIL, N, NLIMIT
* .. External Functions ..
real DO1AHF, FUN
EXTERNAL DO1lAHF, FUN
* .. Executable Statements
WRITE (NOUT,*) ’DO1AHF Example Program Results’
A = 0.0e0
B = 1.0e0

NLIMIT = 0
EPSR = 1.0e-5
IFAIL = 1
ANS = DO1AHF(A,B,EPSR,N,RELERR, FUN,NLIMIT, IFAIL)
WRITE (NOUT, *)
IF (IFAIL.NE.O) THEN
WRITE (NOUT,99997) ‘IFAIL = ', IFAIL
WRITE (NOUT, *)
END IF

[NP1692/14] Page 3

DO1AHF

99999
99998
99997

IF (IFAIL.LE.2) THEN

WRITE (NOUT,99999) ’Integral = ’, ANS

WRITE (NOUT, *)

WRITE (NOUT,99998) ’‘Estimated relative error = ’,

WRITE (NOUT, *)

DOI — Quadrature

RELERR

WRITE (NOUT, 99997) ’Number of function evaluations = /, N

END IF
STOP

FORMAT (1X,A,F8.5)
FORMAT (1X,A,el0.2)
FORMAT (1X,A,I4)
END

real FUNCTION FUN(X)

.. Scalar Arguments ..

real X

.. Executable Statements ..
FUN = 4.0e0/(1.0e0+X*X)
RETURN

END

9.2. Program Data

None.

9.3. Program Results
DOlAHF Example Program Results

Integral = 3.14159

Estimated relative error = 0.58E-08

Number of function evaluations = 15

Page 4 (last)

[NP1692/14)

DOI - Quadrature DO1AJF

DO01AJF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

DO1AJF is a general-purpose integrator which calculates an approximation to the integral of a
function f(x) over a finite interval [a,b]:

b
I=J f(x) dx.

a

2. Specification
SUBROUTINE DO1AJF (F, A, B, EPSABS, EPSREL, RESULT, ABSERR, W,

1 LW, IW, LIW, IFAIL)

INTEGER LW, IW(LIW), LIW, IFAIL

real F, A, B, EPSABS, EPSREL, RESULT, ABSERR,
1 W(LW)

EXTERNAL F

3. Description

DO1AJF is based upon the QUADPACK routine QAGS (Piessens et al. [3]). It is an adaptive
routine, using the Gauss 10-point and Kronrod 21-point rules. The algorithm, described by
de Doncker [1], incorporates a global acceptance criterion (as defined by Malcolm and Simpson
[2]) together with the e-algorithm (Wynn [4]) to perform extrapolation. The local error
estimation is described by Piessens et al. [3].

The routine is suitable as a general purpose integrator, and can be used when the integrand has
singularities, especially when these are of algebraic or logarithmic type.

DO1AJF requires the user to supply a function to evaluate the integrand at a single point.

The routine DO1ATF uses an identical algorithm but requires the user to supply a subroutine to

evaluate the integrand at an array of points. Therefore DO1ATF will be more efficient if the
evaluation can be performed in vector mode on a vector-processing machine.

4. References

[1] DE DONCKER, E.

An Adaptive Extrapolation Algorithm for Automatic Integration.
Signum Newsletter, 13, 2, pp. 12-18, 1978.

[2] MALCOLM, M.A. and SIMPSON, R.B.

Local Versus Global Strategies for Adaptive Quadrature.
A.C.M. Trans. Math. Software, 1, pp. 129-146, 1976.

[3] PIESSENS, R., DE DONCKER-KAPENGA, E,, UBERHUBER, C. and KAHANER, D.
QUADPACK, A Subroutine Package for Automatic Integration.
Springer-Verlag, 1983.

[4] WYNN, P.

On a Device for Computing the e,, (S,) Transformation.
Math. Tables Aids Comp., 10, pp. 91-96, 1956.

[NP1692/14] Page 1

DO01AJF DOI — Quadrature

5. Parameters

1: F - real FUNCTION, supplied by the user. External Procedure
F must return the value of the integrand f at a given point.
Its specification is:

i

real FUNCTION F(X)
real X
I: X ~real Input

! Onentry: the point at which the integrand f must be evaluated.

F must be declared as EXTERNAL in the (sub)program from which DO1AJF is called.
Parameters denoted as Input must not be changed by this procedure.

22 A —real Input
On entry: the lower limit of integration, a.

3: B -real Input
On entry: the upper limit of integration, b. It is not necessary that g < b.

4: EPSABS - real. Input
On entry: the absolute accuracy required. If EPSABS is negative, the absolute value is used.
See Section 7.

5: EPSREL - real. Input
On entry: the relative accuracy required. If EPSREL is negative, the absolute value is used.
See Section 7.

6: RESULT - real. Output
On exit: the approximation to the integral /.

7: ABSERR - real. Output
On exit: an estimate of the modulus of the absolute error, which should be an upper bound
for |I-RESULT.

8: W(LW) - real array. Output

On exit: details of the computation, as described in Section 8.

9: LW — INTEGER. Inpuz

Onentry: the dimension of the array W as declared in the (sub)program from which
DO1AJF is called. The value of LW (together with that of LIW below) imposes a bound on
the number of subintervals into which the interval of integration may be divided by the
routine. The number of subintervals cannot exceed LW/4. The more difficult the integrand,
the larger LW should be.

Suggested value: a value in the range 800 to 2000 is adequate for most problems.
Constraint: LW 2 4,

10: IW(LIW) — INTEGER array. Output

On exit: TW (1) contains the actual number of subintervals used. The rest of the array is used
as workspace.

Page 2 [NP1692/14)

DOI — Quadrature DO01AJF

11:

12:

LIW — INTEGER. Input

Onentry: the dimension of the array IW as declared in the (sub)program from which
DO1AJF is called. The number of subintervals into which the interval of integration may be
divided cannot exceed LIW. '

Suggested value: LIW = LW/4.
Constraint: LIW 2 1.

IFAIL — INTEGER. : Input!/ Output
On entry: IFAIL must be set to 0, —1 or 1. Users who are unfamiliar with this parameter
should refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL # 0
on exit, users are recommended to set IFAIL to —1 before entry. It is then essential to test
the value of IFAIL on exit.

Error Indicators and Warnings
Errors or warnings specified by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message

unit (as defined by X04AAF).

IFAIL = 1)
The maximum number of subdivisions allowed with the given workspace has been reached
without the accuracy. requirements being achieved. Look at the integrand in order to
determine the integration difficulties. If the position of a local difficulty within the interval
can be determined (e.g. a singularity of the integrand or its derivative, a peak, a
discontinuity, etc.) you will probably gain from splitting up the interval at this point and
calling the integrator on the subranges. If necessary, another integrator, which is designed
for handling the type of difficulty involved, must be used. Alternatively, consider relaxing
the accuracy requirements specified by EPSABS and EPSREL, or increasing the amount of
workspace. :

IFAIL = 2

Roundoff error prevents the requested tolerance from being achieved. The error may be
under-estimated. Consider requesting less accuracy.

IFAIL = 3

Extremely bad local integrand behaviour causes a very strong subdivision around one (or
more) points of the interval. The same advice applies as in the case of IFAIL = 1.

IFAIL = 4

The requested tolerance cannot be achieved, because the extrapolation does not increase the
accuracy satisfactorily; the returned result is the best which can be obtained. The same
advice applies as in the case of IFAIL = 1.

IFAIL = 5

The integral is probably divergent, or slowly convergent. Please note that divergence can
occur with any non-zero value of IFAIL.

IFAIL = 6
On entry, LW < 4,
or LIW < 1.

[NP1692/14] Page 3

DO1AJF DOI - Quadrature

7. Accuracy

The routine cannot guarantee, but in practice usually achieves, the following accuracy:
|[I-RESULT| < tol

where
tol = max{|EPSABS|,|[EPSREL|x|I|}

and EPSABS and EPSREL are user-specified absolute and relative error tolerance. Moreover it

returns the quantity ABSERR which, in normal circumstances, satisfies
[I-RESULT| < ABSERR < tol.

8. Further Comments
The time taken by the routine depends on the integrand and the accuracy required.

If IFAIL # O on exit, then the user may wish to examine the contents of the array W, which
contains the end-points of the subintervals used by DO1AJF along with the integral contributions
and error estimates over the subintervals.

Specifically, for i = 1,2,...,n, let r; denote the approximation to the value of the integral over the
subinterval [a;,b;] in the partition of [4,b] and e, be the corresponding absolute error estimate.

b; n
Then, J f(x) dx = r; and RESULT =) r;, unless DOIAJF terminates while testing for
a, i=1

divergence of the integral (see Piessens et al. [3], Section 3.4.3). In this case, RESULT (and
ABSERR) are taken to be the values returned from the extrapolation process. The value of 7 is
returned in IW (1), and the values a;, b;, e; and r; are stored consecutively in the array W, that
is:

i = W),

; = W(n+i),
W(2n+i) and
W(3n+i).

S Q
]

i

0
I

i

9. Example
To compute

2
J xsin(30x) dx
2
*y(-(z))
2

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO1AJF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters
INTEGER LW, LIW
PARAMETER (LW=800, LIN=LW/4)
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalars in Common ..
real PI
INTEGER KOUNT
* .. Local Scalars
real A, ABSERR, B, EPSABS, EPSREL, RESULT
INTEGER IFAIL

Page 4 [NP1692114)

DOI - Quadrature DO01AJF

99999
99998
99997
99996

.. Local Arrays ..

real W(LW)

INTEGER IW(LIW)

.. External Functions ..

real FST, XO01lAAF
EXTERNAL FST, XO0l1lAAF

.. External Subroutines ..
EXTERNAL DO1lAJF

.. Common blocks ..

COMMON /TELNUM/PI, KOUNT

.. Executable Statements ..

WRITE (NOUT,*) ’‘DOl1AJF Example Program Results’
PI = X01lAAF(PI)

EPSABS = 0.0e0

EPSREL = 1.0e-04

A = 0.0e0

B = 2,.0e0%PI

KOUNT = 0

IFAIL = -1

CALL DOlAJF(FST,A,B,EPSABS,EPSREL,RESULT,ABSERR,W,LW,IW,LIW,IFAIL)

WRITE (NOUT, *)

WRITE (NOUT,99999) ‘A - lower limit of integration = ', A
WRITE (NOUT,99999) 'B - upper limit of integration = ', B
WRITE (NOUT,99998) ’EPSABS — absolute accuracy requested = '/,
+ EPSABS

WRITE (NOUT,99998) ’'EPSREL - relative accuracy requested = ',
+ EPSREL

WRITE (NOUT, *)
IF (IFAIL.NE.O) WRITE (NOUT,99996) ’'IFAIL = ', IFAIL
IF (IFAIL.LE.5) THEN
WRITE (NOUT,99997) ’RESULT
+ RESULT
WRITE (NOUT,99998) ’ABSERR
+ , ABSERR
WRITE (NOUT, 99996) ’KOUNT
+ , KOUNT
WRITE (NOUT,99996) ’'IW(1l)
+ IW(1l)
END IF
STOP

approximation to the integral = ',

estimate of the absolute error = '/

number of function evaluations = '

number of subintervals used = ',

FORMAT (1X,A,F10.4)
FORMAT (1X,A,€9.2)
FORMAT (1X,A,F9.5)
FORMAT (1X,A,I4)
END

real FUNCTION FST(X)
.. Scalar Arguments ..

real X

.. Scalars in Common ..

real PI

INTEGER KOUNT

.. Intrinsic Functions ..

INTRINSIC SIN, SQRT

.. Common blocks ..

COMMON /TELNUM/PI, KOUNT

.. Executable Statements ..

KOUNT = KOUNT + 1

FST = X*SIN(30.0e0*X)/SQRT(1.0e0~X**2/(4.0e0*PI**2))
RETURN

END

9.2. Program Data

None.

[NP1692/14)

Page 5

DO1AJF

9.3. Program Results

DO1AJF

A
B
EPSABS
EPSREL

RESULT
ABSERR
KOUNT
IW(l)

Example Program Results

— lower limit of integration = 0.0000

— upper limit of integration = 6.2832

— absolute accuracy requested = 0.00E+00

- relative accuracy requested = 0.10E-03

— approximation to the integral = -2.54326
— estimate of the absolute error = 0.13E-04
— number of function evaluations = 777

— number of subintervals used = 19

D01 - Quadrature

Page 6 (last)

[NP1692/14]

DOI — Quadrature DO01AKF

DO01AKF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

DO1AKF is an adaptive integrator, especially suited to oscillating, non-singular integrands, which
calculates an approximation to the integral of a function f(x) over a finite interval [a,b]:

b
I= I f(x) dx.

2. Specification
SUBROUTINE DO1AKF (F, A, B, EPSABS, EPSREL, RESULT, ABSERR, W,

1 LW, IW, LIW, IFAIL)

INTEGER LW, IW(LIW), LIW, IFAIL

real F, A, B, EPSABS, EPSREL, RESULT, ABSERR,
1 W(LW)

EXTERNAL F

3. Description
DO1AKEF is based upon the QUADPACK routine QAG (Piessens et al. [3]). It is an adaptive
routine, using the Gauss 30-point and Kronrod 61-point rules. A ‘global’ acceptance criterion (as
defined by Malcolm and Simpson [1]) is used. The local error estimation is described in by
Piessens et al. [3].

Because this routine is based on integration rules of high order, it is especially suitable for
non-singular oscillating integrands.

DO1AKF requires the user to supply a function to evaluate the integrand at a single point.
The routine DO1AUF uses an identical algorithm but requires the user to supply a subroutine to

evaluate the integrand at an array of points. Therefore DOIAUF will be more efficient if the
evaluation can be performed in vector mode on a vector-processing machine.

DO1AUF also has an additional parameter KEY which allows the user to select from six different
Gauss-Kronrod rules.

4. References

(1] MALCOLM, M.A. and SIMPSON, R.B.
Local Versus Global Strategies for Adaptive Quadrature.
A.C.M. Trans. Math. Software, 1, pp. 129-146, 1975.

[2] PIESSENS, R.
An Algorithm for Automatic Integration.
Angewandte Informatik, 15, pp. 399-401, 1973.
[3] PIESSENS, R., De DONCKER-KAPENGA, E., UBERHUBER, C. and KAHANER, D.
QUADPACK, A Subroutine Package for Automatic Integration.
Springer-Verlag, 1983.

[NP1692/14] Page 1

DO01AKF D01 — Quadrature

5. Parameters

1: F - real FUNCTION, supplied by the user. External Procedure
F must return the value of the integrand f at a given point.
Its specification is:

real FUNCTION F(X)
real X

L X -real. Input
On entry: the point at which the integrand f must be evaluated.

F must be declared as EXTERNAL in the (sub)program from which DO1AKF is called.
Parameters denoted as /nput must not be changed by this procedure.

22 A-real Input
On entry. the lower limit of integration, a.

3: B -real Input
On entry: the upper limit of integration, b. It is not necessary that a < b.

4: EPSABS - real. Input
On entry: the absolute accuracy required. If EPSABS is negative, the absolute value is used.
See Section 7.

5: EPSREL - real. Input

On entry: the relative accuracy required. If EPSREL is negative, the absolute value is used.
See Section 7.

6: RESULT - real. Output
On exit: the approximation to the integral /.

7: ABSERR - real. Output
On exit: an estimate of the modulus of the absolute error, which should be an upper bound
| -RESULT].

8 W(LW) - real array. Output

On exit: details of the computation, as described in Section 8.

9: LW - INTEGER. Input

Onentry: the dimension of W, as declared in the (sub)program from which DO1AKF is
called. The value of LW (together with that of LIW below) imposes a bound on the number
of subintervals into which the interval of integration may be divided by the routine. The
number of subintervals cannot exceed LW/4. The more difficult the integrand, the larger
LW should be.

Suggested value: a value in the range 800 to 2000 is adequate for most problems.
Constraint: LW 2 4. See IW below.

10: IW(LIW) — INTEGER array. Output

On exit: IW (1) contains the actual number of subintervals used. The rest of the array is used
as workspace.

Page 2 [NP1692/14]

DOI1 — Quadrature DO1AKF

11:

12:

LIW — INTEGER. Input

On entry: the dimension of the array IW as declared in the (sub)program from which
DO1AKF is called. The number of subintervals into which the interval of integration may be
divided cannot exceed LIW.

Suggested value: LIW = LW/4.
Constraint. LIW 2 1.

IFAIL — INTEGER. Input/ Output

On entry: IFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter
should refer to Chapter P01 for details.

Onexit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL # 0
on exit, users are recommended to set IFAIL to —1 before entry. It is then essential to test
the value of IFAIL on exit.

Error Indicators and Warnings
Errors or warnings specified by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message

unit (as defined by X04AAF).

IFAIL = 1
The maximum number of subdivisions allowed with the given workspace has been reached
without the accuracy requirements being achieved. Look at the integrand in order to
determine the integration difficulties. Probably another integrator which is designed for
handling the type of difficulty involved must be used. Alternatively, consider relaxing the
accuracy requirements specified by EPSABS and EPSREL, or increasing the amount of
workspace.

IFAIL = 2
Roundoff error prevents the requested tolerance from being achieved. Consider requesting
less accuracy.

IFAIL = 3

Extremely bad local integrand behaviour causes a very strong subdivision around one (or
more) points of the interval. The same advice applies as in the case of IFAIL = 1.

IFAIL = 4
On entry, LW < 4,
or LIW < 1.
Accuracy

The routine cannot guarantee, but in practice usually achieves, the following accuracy:
|[[-RESULT| < tol

where
tol = max{|EPSABS|,|EPSREL|x|I|},

and EPSABS and EPSREL are user-specified absolute and relative error tolerances. Moreover it
returns the quantity ABSERR which, in normal circumstances satisfies

|I-RESULT| < ABSERR < 1ol.

[NP1692/14) Page 3

DO1AKF DOI - Quadrature

8.

9.1.

Further Comments
The time taken by the routine depends on the integrand and the accuracy required.

If IFAIL # O on exit, then the user may wish to examine the contents of the array W, which
contains the end-points of the subintervals used by DO1AKF along with the integral contributions
and error estimates over these subintervals.

Specifically, for i = 1,2,...,n, let r; denote the approximation to the value of the integral over the
subinterval [a;,b;] in the partition of [4,b] and e, be the corresponding absolute error estimate.
b,

Then, J f(x)dx = r; and RESULT = Y r,. The value of n is returned in IW(1), and the

a; =1

values a;, b;, e; and r; are stored consecutively in the array W, that is:
= W(),

W(n+i),

W(2n+i) and

= W(3n+i).

i

S Q
]

1

Y
I

!

Example
To compute

2n
J x sin(30x) cosx dx.
0

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO1lAKF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER LW, LIW
PARAMETER (LW=800, LIW=LW/4)
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalars in Common ..
INTEGER KOUNT
* .. Local Scalars ..
real A, ABSERR, B, EPSABS, EPSREL, PI, RESULT
INTEGER IFAIL
* .. Local Arrays ..
real W(LW)
INTEGER IW(LIW)
* .. External Functions ..
real FST, X01lAAF
EXTERNAL FST, XO01lAAF
* .. External Subroutines ..
EXTERNAL DO1lAKF
* .. Common blocks ..
COMMON /TELNUM/KOUNT
* .. Executable Statements ..

WRITE (NOUT,*) ’‘DOlAKF Example Program Results’
PI = X01lAAF(PI)

EPSABS = 0.0e0

EPSREL = 1.0e-03

A = 0.0e0

B = 2.0e0*PI

KOUNT = 0

IFAIL = -1

Page 4 [NP1692/14)

D01 — Quadrature

DO01AKF

CALL DO1AKF(FST,A, B, EPSABS, EPSREL, RESULT, ABSERR, W, LW, IW, LIW, IFAIL)

WRITE (NOUT, *)
WRITE (NOUT, 99999) ‘A — lower limit of integration = ', A
WRITE (NOUT,99999) ’'B - upper limit of integration = ', B

WRITE (NOUT,99998) ’EPSABS

absolute accuracy requested = ',

+ EPSABS

WRITE (NOUT,99998) ’'EPSREL

relative accuracy requested = ',

+ EPSREL
WRITE (NOUT, *)
IF (IFAIL.NE.QO) WRITE (NOUT, 99996) 'IFAIL = ', IFAIL
IF (IFAIL.LE.3) THEN
WRITE (NOUT,99997) ’‘RESULT — approximation to the integral = ',

+
+
+

+

99999
99998
99997
99996

RESULT

WRITE (NOUT,99998) ’"ABSERR — estimate of the absolute error = ’

, ABSERR

WRITE (NOUT,99996) ’/KOUNT - number of function evaluations = '

, KOUNT

WRITE (NOUT,99996) ‘IW(l) - number of subintervals used = ’/,

END

STOP

IW(1l)
IF

FORMAT (1X,A,F10.4)
FORMAT (1X,A,€9.2)
FORMAT (1X,A,F9.5)
FORMAT (1X,A,I4)

END

real

real

FUNCTION FST(X)

Scalar Arguments ..

X

Scalars in Common ..

INTEGER KOUNT

..

Intrinsic Functions ..

INTRINSIC COs, SIN

Common blocks ..

COMMON /TELNUM/KOUNT

Executable Statements ..

KOUNT = KOUNT + 1

FST

= X*(SIN(30.0e0*X))*COS(X)

RETURN

END

9.2. Program Data

None.

9.3. Program Results

DO1AKF

A
B

EPSABS
EPSREL

RESULT
ABSERR
KOUNT

IW(1l)

Example Program Results

lower limit of integration =j 0.0000

upper limit of integration = 6.2832
absolute accuracy requested = 0.00E+00
relative accuracy requested = 0.10E-02

approximation to the integral = -0.20967

estimate of the absolute error = 0.45E-13
number of function evaluations = 427
number of subintervals used = 4

[NP1692/14]

Page 5 (last)

D01 - Quadrature DO1ALF

DO01ALF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

DO1ALF is a general purpose integrator which calculates an approximation to the integral of a
function f(x) over a finite interval [a,5]:

b

1= J Sx) dx

where the integrand may have local singular behaviour at a finite number of points within the
integration interval.

Specification
SUBROUTINE DO1ALF (F, A, B, NPTS, POINTS, EPSABS, EPSREL, RESULT,
1 ABSERR, W, LW, IW, LIW, IFAIL)
INTEGER NPTS, LW, IW(LIW), LIW, IFAIL
real F, A, B, POINTS(*), EPSABS, EPSREL, RESULT,
1 ABSERR, W(LW)
EXTERNAL F
Description

DO1ALF is based upon the QUADPACK routine QAGP (Piessens et al. [3]). It is very similar
to DO1AJF, but allows the user to supply ‘break-points’, points at which the function is known to
be difficult. It is an adaptive routine, using the Gauss 10-point and Kronrod 21-point rules. The
algorithm described by de Doncker [1], incorporates a global acceptance criterion (as defined by
Malcolm and Simpson [2]) together with the g-algorithm (Wynn [4]) to perform extrapolation.
The user-supplied ‘break-points’ always occur as the end-points of some sub-interval during the
adaptive process. The local error estimation is described by Piessens er al. [3].

References
[1] DE DONCKER, E.
An Adaptive Extrapolation Algorithm for Automatic Integration.
Signum Newsletter, 13, 2, pp. 12-18, 1978.
[2] MALCOLM, M.A. and SIMPSON, R.B.
Local Versus Global Strategies for Adaptive Quadrature.
ACM Trans. Math. Softw., 1, pp. 129-146, 1976.

[3] PIESSENS, R., DE DONCKER-KAPENGA, E., UBERHUBER, C. and KAHANER, D.
QUADPACK, A Subroutine Package for Automatic Integration.
Springer-Verlag, 1983.

[4] WYNN, P.

On a Device for Computing the e,, (S,) Transformation.
Math. Tables Aids Comput., 10, pp. 91-96, 1956.

[NP2834117) Page 1

DO1ALF D01 - Quadrature

5. Parameters

1: F - real FUNCTION, supplied by the user. External Procedure
F must return the value of the integrand f at a given point.
Its specification is:

real FUNCTION F(X)
real X

1: X -real Input
On entry: the point at which the integrand / must be evaluated.

F must be declared as EXTERNAL in the (sub)program from which DO1ALF is called.
Parameters denoted as Input must not be changed by this procedure.

22 A-real Input
On entry: the lower limit of integration, a.

33 B -real Input
On entry: the upper limit of integration, b. It is not necessary that a < b.

4 NPTS - INTEGER. Input
On entry: the number of user-supplied break-points within the integration interval.
Constraint: NPTS 2 0.

5: POINTS(NPTS) - real array. Input
On entry: the user-specified break-points.
Constraint: the break-points must all lie within the interval of integration (but may be
supplied in any order).

6: EPSABS - real. Input

On entry: the absolute accuracy required. If EPSABS is negative, the absolute value is used.
See Section 7.

7. EPSREL - real. Input
On entry: the relative accuracy required. If EPSREL is negative, the absolute value is used.
See Section 7.

8: RESULT - real. Input

On entry: the approximation to the integral /.

9: ABSERR - real. Output

On exit: an estimate of the modulus of the absolute error, which should be an upper bound
for |I-RESULT]|.

10: W(LW) - real array. Output
On exit: details of the computation, as described in Section 8.

11: LW - INTEGER. Input

Onentry: the dimension of the array W as declared in the (sub)program from which
DO1ALF is called. The value of LW (together with that of LIW below) imposes a bound on
the number of sub-intervals into which the interval of integration may be divided by the
routine. The number of sub-intervals cannot exceed (LW-2XxXNPTS-4)/4. The more
difficult the integrand, the larger LW should be.

Page 2 [NP2834117)

D01 — Quadrature DO1ALF

12:

13:

14:

Suggested value: a value in the range 800 to 2000 is adequate for most problems.
Constraint. LW 2 2xNPTS + 8.

IW(LIW) — INTEGER array. Output

On exit: TW (1) contains the actual number of subintervals used. The rest of the array is used
as workspace.

LIW — INTEGER. Input

Onentry: the dimension of the array IW as declared in the (sub)program from which
DO1ALF is called. The number of subintervals into which the interval of integration may be
divided cannot exceed (LIW-NPTS-2)/2.

Suggested value: LIW = LW/2,
Constraint: LIW 2 NPTS + 4.

IFAIL — INTEGER. Input/ Output

On entry: IFAIL must be set to 0, —1 or 1. Users who are unfamiliar with this parameter
should refer to Chapter PO1 for details.

Onexit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL # 0
on exit, users are recommended to set IFAIL to -1 before entry. It is then essential to test
the value of IFAIL on exit.

Error Indicators and Warnings
Errors or warnings specified by the routine:

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1

The maximum number of subdivisions allowed with the given workspace has been reached,
without the accuracy requirements being achieved. Look at the integrand in order to
determine the integration difficulties. If the position of a local difficulty within the interval
can be determined (e.g. a singularity of the integrand or its derivative, a peak, a
discontinuity, etc.) it should be supplied to the routine as an element of the vector POINTS.
If necessary, another integrator should be used, which is designed for handling the type of
difficulty involved. Alternatively, consider relaxing the accuracy requirements specified by
EPSABS and EPSREL, or increasing the amount of workspace.

IFAIL = 2
Roundoff error prevents the requested tolerance from being achieved. The error may be
under-estimated. Consider requesting less accuracy.

IFAIL = 3

Extremely bad local integrand behaviour causes a very strong subdivision around one (or
more) points of the interval. The same advice applies as in the case of IFAIL = 1.

IFAIL = 4

The requested tolerance cannot be achieved, because the extrapolation does not increase the
accuracy satisfactorily; the result returned is the best which can be obtained. The same
advice applies as in the case IFAIL = 1.

IFAIL = 5

The integral is probably divergent, or slowly convergent. Please note that divergence can
also occur with any other non-zero value of IFAIL.

[NP1692/14] Page 3

DO1ALF D01 — Quadrature

IFAIL = 6

The input is invalid: break-points are specified outside the integration range,
NPTS > LIMIT or NPTS < 0. RESULT and ABSERR are set to zero.

IFAIL = 7
On entry, LW < 2xNPTS + 8,
or LIW < NPTS + 4.
Accuracy

The routine cannot guarantee, but in practice usually achieves, the following accuracy:
|I-RESULT| < tol

where
tol = max{|EPSABS|,|EPSREL|x|I|}

and EPSABS and EPSREL are user-specified absolute and relative error tolerances. Moreover it
returns the quantity ABSERR which, in normal circumstances, satisfies

II-RESULT| < ABSERR < tol.

Further Comments
The time taken by the routine depends on the integrand and on the accuracy required.

If IFAIL # O on exit, then the user may wish to examine the contents of the array W, which
contains the end-points of the subintervals used by DO1ALF along with the integral contributions
and error estimates over these subintervals.

Specifically, for i = 1,2,...,n, let r; denote the approximation to the value of the integral over the
subinterval [a;,b;] in the partition of [a,b] and e; be the corresponding absolute error estimate.

b; n
Then, J‘ f(x)dx = r; and RESULT = Y r; unless DO1ALF terminates while testing for
a, =1

divergence of the integral (see Piessens et al. [3] Section 3.4.3). In this case, RESULT (and
ABSERR) are taken to be the values returned from the extrapolation process. The value of » is
returned in IW (1), and the values a;, b;, e; and r; are stored consecutively in the array W, that
is:

a;, = W(i),

b, = W(n+i),

e; = W(2n+i) and

r. = W(3n+i).
Example
To compute

1

[l

o Vix—il

A break-point is specified at x = 4, at which point the integrand is infinite. (For definiteness the
function FST returns the value 0.0 at this point.)

Page 4 [NP1692/14)

D01 — Quadrature DO1ALF

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO1ALF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER NPTS, LW, LIW
PARAMETER (NPTS=1, LW=800, LIW=LW/2)
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalars in Common ..
INTEGER KOUNT
* .. Local Scalars ..
real A, ABSERR, B, EPSABS, EPSREL, RESULT
INTEGER IFAIL
* .. Local Arrays ..
real POINTS(NPTS), W(LW)
INTEGER IW(LIW)
* .. External Functions ..
real FST
EXTERNAL FST
* .. External Subroutines ..
EXTERNAL DO1lALF
* .. Common blocks ..
COMMON /TELNUM/KOUNT
* .. Executable Statements ..

WRITE (NOUT,*) ’'DOlALF Example Program Results’
EPSABS = 0.0e0

EPSREL = 1.0e-03

A = 0.0e0

B = 1.0e0

POINTS(1) = 1.0e0/7.0e0

KOUNT = 0

IFAIL = -1

CALL DOlALF(FST,A,B,NPTS,POINTS, EPSABS, EPSREL, RESULT, ABSERR, W, LW,
+ IW,LIW, IFAIL)

WRITE (NOUT, *)

WRITE (NOUT,99999) ’A — lower limit of integration = ', A
WRITE (NOUT,99999) 'B — upper limit of integration = ‘, B
WRITE (NOUT,99998) ’EPSABS absolute accuracy requested = ',
+ EPSABS

WRITE (NOUT,99998) ’'EPSREL - relative accuracy requested = ',
+ EPSREL

WRITE (NOUT, 99999) ’POINTS(l) — given break-point = ’, POINTS(1)
WRITE (NOUT, *)

IF (IFAIL.NE.O) WRITE (NOUT,99996) 'IFAIL = ', IFAIL

IF (IFAIL.LE.5) THEN

WRITE (NOUT, 99997)

+ ’ RESULT — approximation to the integral = ’, RESULT
WRITE (NOUT,99998)

+ ! ABSERR - estimate of the absolute error = ’, ABSERR
WRITE (NOUT, 99996)

+ ’ KOUNT - number of function evaluations = ’, KOUNT
WRITE (NOUT, 99996) ’IW(l) - number of subintervals used = '/,

+ IW(1l)

END IF

STOP

99999 FORMAT (1X,A,F10.4)

99998 FORMAT (1X,A,e9.2)

99997 FORMAT (1X,A,F9.5)

99996 FORMAT (1X,A,I4)
END

[NP1692/14] Page 5

DOIALF

9.2.

9.3.

real FUNCTION FST(X)

* .. Scalar Arguments ..
real X
* .. Scalars in Common ..
INTEGER KOUNT
* .. Local Scalars .. .
real A
* .. Intrinsic Functions ..
INTRINSIC ABS
* .. Common blocks ..
COMMON /TELNUM/KOUNT
* .. Executable Statements ..

KOUNT = KOUNT + 1
A = ABS(X-1.0e0/7.0e0)

FST = 0.0e0
IF (A.NE.0.0eQ) FST = Ax*x(-0.5€0)
RETURN
END
Program Data
None.
Program Results

DO1lALF Example Program Results

A - lower limit of integration = 0.0000
B - upper limit of integration = 1.0000
EPSABS - absolute accuracy requested = 0.00E+00
EPSREL - relative accuracy requested = 0.10E-02
POINTS(1l) — given break-ppint = 0.1429
g /
RESULT - approximatioq/to t@é integral = 2.60757
ABSERR — estimate of the absolute error = 0.61E-13
KOUNT - number of function evaluations = 462

IW(l) - number of subintervals used = 12

DOI - Quadrature

Page 6 (last)

[NP1692/14)

DOI — Quadrature DO01AMF

DO1AMF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

DOIAMF calculates an approximation to the integral of a function f(x) over an infinite or
semi-infinite interval [a,b]:

b
I= J- f(x) dx.
a
Specification
SUBROUTINE DOlAMF (F, BOUND, INF, EPSABS, EPSREL, RESULT, ABSERR,
1 W, LW, IW, LIW, IFAIL)
INTEGER INF, LW, IW(LIW), LIW, IFAIL
real F, BOUND, EPSABS, EPSREL, RESULT, ABSERR, W(LW)
EXTERNAL F
Description

DO1AMEF is based on the QUADPACK routine QAGI (Piessens et al. [3]). The entire infinite
integration range is first transformed to [0,1] using one of the identities:

pa ol

Fx)dx = f(a—l:-f)tlzdr
Y _oo Y0
p oo 1

foar = | flarlZ) lar
da do t t2

p oo p oo 1
fod = | (f4f—n))dx = j (5o (Z22)]
v —s0 Io o

where a represents a finite integration limit. An adaptive procedure, based on the Gauss
seven-point and Kronrod 15-point rules, is then employed on the transformed integral. The
algorithm, described by de Doncker [1], incorporates a global acceptance criterion (as defined by
Maicolm and Simpson [2]) together with the g-algorithm (Wynn [4]) to perform extrapolation.
The local error estimation is described by Piessens et al. [3].

References

[1] DE DONCKER, E.
An Adaptive Extrapolation Algorithm for Automatic Integration.
Signum Newsletter, 13, 2, pp. 12-18, 1978.

[2] MALCOLM, M.A. and SIMPSON, R.B.
Local Versus Global Strategies for Adaptive Quadrature.
ACM Trans. Math. Softw., 1, pp. 129-146, 1976.

[3] PIESSENS, R., DE DONCKER-KAPENGA, E., UBERHUBER, C. and KAHANER, D.
QUADPACK, A Subroutine Package for Automatic Integration.
Springer-Verlag, 1983.
[4] WYNN,P.
Device for Computing the e,, (S,) Transformation.
Math. Tables Aids Comput., 10, pp. 91-96, 1956.

[NP2136/15] Page |

DO1AMF DO1 - Quadrature

s.
1:

Parameters

F — real FUNCTION, supplied by the user. External Procedure
F must return the value of the integrand f at a given point.
Its specification is:

real FUNCTION F(X)
real X

1: X —real Input
On entry: the point at which the integrand f must be evaluated.

F must be declared as EXTERNAL in the (sub)program from which DO1AMF is called.
Parameters denoted as /nput must not be changed by this procedure.

BOUND - real. Input

On entry: the finite limit of the integration range (if present). BOUND is not used if the
interval is doubly infinite.

INF — INTEGER. Input
On entry: indicates the kind of integration range:
if INF = 1, the range is [BOUND, +o)
if INF = —1, the range is (—eo, BOUND]
if INF = +2, the range is (—oo, +00).
Constraint: INF = -1, 1 or 2.

EPSABS - real.) Input

On entry: the absolute accuracy required. If EPSABS is negative, the absolute value is used.
See Section 7.

EPSREL - real. Input
On entry: the relative accuracy required. If EPSREL is negative, the absolute value is used.
See Section 7.

RESULT - real. Output
On exit: the approximation to the integral /.

ABSERR - real. Output
On exit: an estimate of the modulus of the absolute error, which should be an upper bound
for |[-RESULT]|.

W(LW) — real array. Output

On exit: details of the computation, as described in Section 8.

LW — INTEGER. Input

Onentry: the dimension of the array W as declared in the (sub)program from which
DO1AMEF is called. The value of LW (together with that of LIW below) imposes a bound
on the number of sub-intervals into which the interval of integration may be divided by the
routine. The number of sub-intervals cannot exceed LW/4. The more difficult the integrand,
the larger LW should be.

Suggested value: a value in the range 800 to 2000 is adequate for most problems.
Constraint: LW 2 4.

Page 2 [NP2136/15]

DO1 — Quadrature DO01AMF

10: IW(LIW) — INTEGER array. Output

Onexit: IW(1) contains the actual number of sub-intervals used. The rest of the array is
used as workspace.

11: LIW — INTEGER. Input

Onentry: the dimension of the array IW as declared in the (sub)program from which
DO1AMF is called. The number of sub-intervals into which the interval of integration may
be divided cannot exceed LIW.

Suggested value: LIW = LW/4,
Constraint: LIW 2 1.

12: TFAIL - INTEGER. Input/ Output

On entry: IFAIL must be set to 0, —1 or 1. Users who are unfamiliar with this parameter
should refer to Chapter P01 for details.

Onexit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL # 0
on exit, users are recommended to set IFAIL to —1 before entry. It is then essential to test
the value of IFAIL on exit.

6. Error Indicators and Warnings
Errors or warnings specified by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message

unit (as defined by X04AAF).

IFAIL =1
The maximum number of subdivisions allowed with the given workspace has been reached
without the requested accuracy requirements being achieved. Look at the integrand in order
to determine the integration difficulties. If the position of a local difficulty within the
interval can be determined (e.g. a singularity of the integrand or its derivative, a peak, a
discontinuity, etc.) you will probably gain from splitting up the interval at this point and
calling DOIAMF on the infinite subrange and an appropriate integrator on the finite
subrange. Alternatively, consider relaxing the accuracy requirements specified by EPSABS
and EPSREL, or increasing the amount of workspace.

IFAIL = 2

Round-off error prevents the requested tolerance from being achieved. The error may be
underestimated. Consider requesting less accuracy.

IFAIL = 3

Extremely bad local integrand behaviour causes a very strong subdivision around one (or
more) points of the interval. The same advice applies as in the case of IFAIL = 1.

IFAIL = 4

The requested tolerance cannot be achieved, because the extrapolation does not increase the
accuracy satisfactorily; the returned result is the best which can be obtained. The same
advice applies as in the case of IFAIL = 1.

IFAIL = 5

The integral is probably divergent, or slowly convergent. It must be noted that divergence
can also occur with any other non-zero value of IFAIL.

[NP2136/15) Page 3

DO1AMF DOI — Quadrature

7.

IFAIL = 6

On entry, LW < 4,

or LIW < 1,

or INF # -1, 1 or 2.
Accuracy

The routine cannot guarantee, but in practice usually achieves, the following accuracy:
|[I-RESULT]| < tol,

where
tol = max{|EPSABS|,|[EPSREL|x|I|}

and EPSABS and EPSREL are user-specified absolute and relative error tolerances. Moreover it
returns the quantity ABSERR, which, in normal circumstances, satisfies

[I-RESULT| < ABSERR < 1ol.

Further Comments

The time taken by the routine depends on the integrand and the accuracy required.

If IFAIL # O on exit, then the user may wish to examine the contents of the array W, which
contains the end-points of the sub-intervals used by DO1AMF along with the integral
contributions and error estimates over these sub-intervals.

Specifically, for i = 1,2,...,n, let r; denote the approximation to the value of the integral over the
sub-interval [a;,b;] in the partition of [a,b] and e; be the corresponding absolute error estimate.

b n
Then, J f(x)dx = r; and RESULT = Y r, unless DOLAMF terminates while testing for

a i=1
divergence of the integral (see Piessens et al. [3] Section 3.4.3). In this case, RESULT (and
ABSERR) are taken to be the values returned from the extrapolation process. The value of n is
returned in IW (1), and the values a;, b;, e; and r; are stored consecutively in the array W, that
is:

ai = W(i),

b, = W(n+i),

e; = W(2n+i) and
r; = W(Q3n+i).

Note: that this information applies to the integral transformed to (0,1) as described in Section 3,
not to the original integral.

Example
To compute

T
L (x+1)«/§dx'

The exact answer is 7.

Page 4 [NP2136/15)

DO1 — Quadrature DO01AMF

9.1. Program Text

Note: the
the Users

listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
* Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this

manual, the results produced may not be identical for all implementations.

*
*
*

99999
99998
99997
99996

[NP2136115)

DO1AMF Example Program Text
Mark 14 Revised. NAG Copyright 1989.

.. Parameters ..

INTEGER LW, LIW
PARAMETER (LW=800, LIW=LW/4)
INTEGER NOUT

PARAMETER (NOUT=6)

.. Scalars in Common ..

INTEGER KOUNT

.. Local Scalars ..

real A, ABSERR, EPSABS, EPSREL, RESULT
INTEGER IFAIL, INF

.. Local Arrays ..

real W(LW)

INTEGER IW(LIW)

.. External Functions ..

real FST

EXTERNAL FST

.. External Subroutines ..
EXTERNAL DO1AMF

.. Common blocks ..

COMMON / TELNUM/KOUNT

.. Executable Statements ..

WRITE (NOUT,*) ’‘DOl1AMF Example Program Results’
EPSABS = 0.0e0

EPSREL = 1.0e-04

A = 0.0e0

INF = 1

KOUNT = 0

IFAIL = -1

CALL DO1AMF (FST,A, INF, EPSABS, EPSREL, RESULT, ABSERR, W, LW, IW, LIW,
+ IFAIL)

WRITE (NOUT, *)
WRITE (NOUT,99999) ’'aA - lower limit of integration = ’, A
WRITE (NOUT,*) ’'B - upper limit of integration = infinity’
WRITE (NOUT,99998) ’'EPSABS - absolute accuracy requested = ',
+ EPSABS
WRITE (NOUT,99998) ’EPSREL - relative accuracy requested = ',
+ EPSREL
WRITE (NOUT, *)
IF (IFAIL.NE.O) WRITE (NOUT,99996) ’'IFAIL = ’, IFAIL
IF (IFAIL.LE.5) THEN
WRITE (NOUT, 99997) ’'RESULT
+ RESULT
WRITE (NOUT,99998) ’ABSERR
+ , ABSERR
WRITE (NOUT, 99996) ’KOUNT
+ , KOUNT
WRITE (NOUT,99996) ’'IW(1l)
+ IW(1l)
END IF
STOP

approximation to the integral = 7,

estimate of the absolute error = ’

number of function evaluations = ’

number of subintervals used = ’,

FORMAT (1X,A,F10.4)
FORMAT (1X,A,€9.2)
FORMAT (1X,A,F9.5)
FORMAT (1X,A,I4)
END

Page 5

DO01AMF

real FUNCTION FST(X)

real

Scalar Arguments
X
Scalars in Common ..

INTEGER KOUNT

Intrinsic Functions ..

INTRINSIC SQRT

Common blocks

COMMON /TELNUM/KOUNT

Executable Statements ..

KOUNT = KOUNT + 1

FST = 1.0e0/((X+1.0e0)*SQRT(X))
RETURN

END

9.2. Program Data

None.

9.3. Program Results

DO1AMF

A
B
EPSABS
EPSREL

RESULT
ABSERR
KOUNT
IW(1l)

Example Program Results

lower limit of integration =

0

.0000

upper limit of integration = infinity
absolute accuracy requested = 0.00E+00
relative accuracy requested = 0.10E-03

approximation to the integral =
estimate of the absolute error =
number of function evaluations =
number of subintervals used =

10

3.14159
0.27E-04
285

D01 — Quadrature

Page 6 (last)

[NP2136/15]

DOI - Quadrature DO01ANF

DO01ANF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

DO1ANF calculates an approximation to the sine or the cosine transform of a function g over
[a,b]:
b b
I = j g(x)sin(ax)dx or I= J g(x) cos(ax) dx

(for a user-specified value of w).

2. Specification
SUBROUTINE DO1ANF (G, A, B, OMEGA, KEY, EPSABS, EPSREL, RESULT,

1 ABSERR, W, LW, IW, LIW, IFAIL)

INTEGER KEY, LW, IW(LIW), LIW, IFAIL

real G, A, B, OMEGA, EPSABS, EPSREL, RESULT, ABSERR,
1 W(LW)

EXTERNAL G

3. Description

DO1ANF is based upon the QUADPACK routine QFOUR (Piessens et al. [3]). It is an adaptive
routine, designed to integrate a function of the form g(x)w(x), where w(x) is either sin(@x) or
cos(wx). If a subinterval has length
L = |b-a|2”

then the integration over this subinterval is performed by means of a modified Clenshaw-Curtis
procedure (Piessens and Branders [2]) if Lo > 4 and / < 20. In this case a Chebyshev-series
approximation of degree 24 is used to approximate g(x), while an error estimate is computed
from this approximation together with that obtained using Chebyshev-series of degree 12. If the
above conditions do not hold then Gauss 7-point and Kronrod 15-point rules are used. The
algorithm, described in [3], incorporates a global acceptance criterion (as defined in Malcolm
and Simpson [1]) together with the e-algorithm Wynn [4] to perform extrapolation. The local
error estimation is described in [3].

4. References

[1] MALCOLM, M.A. and SIMPSON, R.B.
Local Versus Global Strategies for Adaptive Quadrature.
A.C.M. Trans. Math. Software, 1, pp. 129-146, 1976.

[2] PIESSENS, R. and BRANDERS, M.
Algorithm 002. Computation of Oscillating Integrals.
J. Comp. Appl. Math., 1, pp. 153-164, 1975.
[3] PIESSENS, R., DE DONCKER-KAPENGA, E., UBERHUBER, C. and KAHANER, D.
QUADPACK, A Subroutine Package for Automatic Integration.
Springer-Verlag, 1983.
[4] WYNN, P.
On a Device for Computing the e, (S,) Transformation.
Math. Tables Aids Comp., 10, pp. 91-96, 1956.

[NP1692/14] Page 1

DO1ANF DOI - Quadrature

5. Parameters

I: G - real FUNCTION, supplied by the user. External Procedure
G must return the value of the function g at a given point.

Its specification is:
real FUNCTION G(X)
real X
1: X —real Input
On entry: the point at which the function g must be evaluated.
G must be declared as EXTERNAL in the (sub)program from which DO1ANF is called.
Parameters denoted as Input must not be changed by this procedure.

22 A-real Input
On entry: the lower limit of integration, a.

33 B -—real Input
On entry: the upper limit of integration, b. It is not necessary that a < b.

4: OMEGA - real. Input
On entry: the parameter @ in the weight function of the transform.

5: KEY — INTEGER. Input
On entry: indicates which integral is to be computed:

if KEY = 1, w(x) = cos(ax);
if KEY = 2, w(x) = sin(ax).
Constraint: KEY =1 or 2.

6: EPSABS - real. Input
On entry: the absolute accuracy required. If EPSABS is negative, the absolute value is used.
See Section 7.

7: EPSREL - real. Input
On entry: the relative accuracy required. If EPSREL is negative, the absolute value is used.
See Section 7.

8: RESULT - real. Output
On exit: the approximation to the integral /.

9: ABSERR - real. Output
On exit: an estimate of the modulus of the absolute error, which should be an upper bound
for |I-RESULT.

10: 'W(LW) — real array. Output

11:

Page 2

On exit: details of the computation, as described in Section 8.

LW — INTEGER. Inpur

On entry: the dimension of the array W as declared in the (sub)program from which
DO1ANF is called. The value of LW (together with that of LIW below) imposes a bound on
the number of subintervals into which the interval of integration may be divided by the
routine. The number of subintervals cannot exceed LW/4. The more difficult the integrand,
the larger LW should be.

[NP1692/ 14)

DOI — Quadrature DO01ANF

12:

13:

14:

Suggested value: a value in the range 800 to 2000 is adequate for most problems.
Constraint: LW 2 4.

IW(LIW) — INTEGER array. Output

On exit: TW (1) contains the actual number of subintervals used. The rest of the array is used
as workspace.

LIW — INTEGER. Input

Onentry: the dimension of the array IW as declared in the (sub)program from which
DO1ANF is called. The number of subintervals into which the interval of integration may be
divided cannot exceed LIW/2.

Suggested value: LIW = LW/2,
Constraint: LIW 2 2.

IFAIL - INTEGER. Input/ Output

On entry: IFAIL must be set to 0, —1 or 1. Users who are unfamiliar with this parameter
should refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL # 0
on exit, users are recommended to set IFAIL to —1 before entry. It is then essential to test
the value of IFAIL on exit.

Error Indicators and Warnings

Errors or warnings specified by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL = 1

The maximum number of subdivisions allowed with the given workspace has been reached
without the accuracy requested being achieved. Look at the integrand in order to determine
the integration difficulties. If the position of a local difficulty within the interval can be
determined (e.g. a singularity of the integrand or its derivative, a peak, a discontinuity, etc.)
you will probably gain from splitting up the interval at this point and calling the integrator
on the subranges. If necessary, another integrator, which is designed for handling the type of
difficulty involved, must be used. Alternatively consider relaxing the accuracy requirements
specified by EPSABS and EPSREL, or increasing amount of workspace.

IFAIL = 2

Roundoff error prevents the requested tolerance from being achieved. The error may be
underestimated. Consider requesting less accuracy.

IFAIL = 3

Extremely bad local behaviour of g(x) causes a very strong subdivision around one (or
more) points of the interval. The same advice applies as in the case of IFAIL = 1.

IFAIL = 4

The requested tolerance cannot be achieved because the extrapolation does not increase the
accuracy satisfactorily; the returned result is the best which can be obtained. The same
advice applies as in the case of IFAIL = 1.

IFAIL = 5

The integral is probably divergent, or slowly convergent. It must be noted that divergence
can occur with any non-zero value of IFAIL.

[NP1692/14] Page 3

DO1ANF DOI - Quadrature

9.1.

Page 4

IFAIL = 6
On entry, KEY < 1,
or KEY > 2.
IFAIL = 7
On entry, LW < 4,
or LIW < 2.
Accuracy

The routine cannot guarantee, but in practice usually achieves, the following accuracy:
[I-RESULT| < 1ol,

where
tol = max{|EPSABS|,|EPSREL|x|I|},

and EPSABS and EPSREL are user-specified absolute and relative tolerances. Moreover it
returns the quantity ABSERR, which, in normal circumstances, satisfies

II-RESULT| < ABSERR < tol.

Further Comments
The time taken by the routine depends on the integrand and on the accuracy required.

If IFAIL # O on exit, then the user may wish to examine the contents of the array W, which
contains the end-points of the subintervals used by DO1ANF along with the integral contributions
and error estimates over these subintervals.

Specifically, for i = 1,2,...,n, let r, denote the approximation to the value of the integral over the
subinterval [a,,b;] in the partition of [a,b] and e, be the corresponding absolute error estimate.

bi n
Then,j 8(x)w(x) dx = r;and RESULT = Y r; unless DO1ANF terminates while testing for
a, i=1
divergence of the integral (see Piessens ez al. [3] Section 3.4.3). In this case, RESULT (and
ABSERR) are taken to be the values returned from the extrapolation process. The value of n is
returned in IW (1), and the values a;, b;, e; and r; are stored consecutively in the array W, that

is:
a, = W(i),

i = W(n+i),

W(2n+i) and

; = W(3n+i).

S

)

Example
To compute

1
J‘ Inx sin(10mx) dx.
0

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO1ANF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters .
INTEGER LW, LIW
PARAMETER (LW=800, LIW=LW/2)
INTEGER NOUT
PARAMETER (NOUT=6)

[NP1692/14]

DOI - Quadrature DO01ANF

99999
99998
99997
99996

(NP1692/14)

.. Scalars in Common ..

INTEGER KOUNT

.. Local Scalars ..

real A, ABSERR, B, EPSABS, EPSREL, OMEGA, PI, RESULT
INTEGER IFAIL, KEY

.. Local Arrays ..

real W(LW)

INTEGER IW(LIW)

.. External Functions ..

real FST, XO0lAAF
EXTERNAL FST, XO0lAAF
.. External Subroutines ..
EXTERNAL DO1ANF

.. Common blocks ..

COMMON /TELNUM/KOUNT

.. Executable Statements ..

WRITE (NOUT,*) 'DO1ANF Example Program Results’
EPSREL = 1.0e-04

EPSABS = 0.0e+00

A = (0.0e0

B = 1.0e0

OMEGA = 10.0e0*X01AAF (PI)

KEY = 2

KOUNT = 0

IFAIL = -1

CALL DO1lANF(FST,A,B,OMEGA,KEY, EPSABS, EPSREL, RESULT, ABSERR, W, LW, IW,
+ LIW,IFAIL)

WRITE (NOUT, *)

WRITE (NOUT,99999) ‘A - lower limit of integration = ', A
WRITE (NOUT,99999) 'B - upper limit of integration = ', B
WRITE (NOUT, 99998) ’EPSABS - absolute accuracy requested = ',
+ EPSABS

WRITE (NOUT,99998) ’'EPSREL - relative accuracy requested = '/,
+ EPSREL

WRITE (NOUT, *)
IF (IFAIL.NE.O) WRITE (NOUT,99996) ’'IFAIL = r, IFAIL
IF (IFAIL.LE.5) THEN
WRITE (NOUT,99997) ’‘RESULT - approximation to the integral = ',
+ RESULT
WRITE (NOUT, 99998) ’ABSERR
+ , ABSERR
WRITE (NOUT,99996) ’KOUNT - number of function evaluations = '
+ , KOUNT
WRITE (NOUT,99996) "IW(1l)
+ IW(1l)
END IF
STOP

estimate of the absoclute error = '

1

number of subintervals used = ’,

FORMAT (1X,A,F10.4)
FORMAT (1X,A,€9.2)
FORMAT (1X,A,F9.5)
FORMAT (1X,A,I4)
END

real FUNCTION FST(X)
.. Scalar Arguments ..

real X

.. Scalars in Common ..

INTEGER KOUNT

.. Intrinsic Functions ..
INTRINSIC LOG

.. Common blocks ..

COMMON /TELNUM/KOUNT

Page 5

DO1ANF DOI - Quadrature

* .. Executable Statements
KOUNT = KOUNT + 1
FST = 0.0e0
IF (X.GT.0.0e0) FST = LOG(X)
RETURN
END

9.2. Program Data
None.

9.3. Program Results
DO1ANF Example Program Results

A — lower limit of integration = 0.0000

B — upper limit of integration = 1.0000
EPSABS - absolute accuracy requested = 0.00E+00
EPSREL - relative accuracy requested = 0.10E-03
RESULT - approximation to the integral = -0.12814
ABSERR - estimate of the absolute error = 0.36E-05
KOUNT - number of function evaluations = 275
IW(l) - number of subintervals used = 8

Page 6 (last) [NP1692/14]

DO1 - Quadrature DO1APF

DO1APF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

DO1APF is an adaptive integrator which calculates an approximation to the integral of a function
g(x)w(x) over a finite interval [a,b]:

b
1= J g(x)w(x)dx

a

where the weight function w has end-point singularities of algebraico-logarithmic type.

Specification
SUBROUTINE DO1APF (G, A, B, ALFA, BETA, KEY, EPSABS, EPSREL, RESULT,
1 ABSERR, W, LW, IW, LIW, IFAIL)
INTEGER KEY, LW, IW(LIW), LIW, IFAIL
real G, A, B, ALFA, BETA, EPSABS, EPSREL, RESULT,
1 ABSERR, W(LW)
EXTERNAL G
Description

DO1APF is based upon the QUADPACK routine QAWSE (Piessens et al. [3]) and integrates a
function of the form g(x)w(x), where the weight function w(x) may have algebraico-
logarithmic singularities at the end-points a and/or b. The strategy is a modification of that in
DO1AKF. We start by bisecting the original interval and applying modified Clenshaw-Curtis
integration of orders 12 and 24 to both halves. Clenshaw-Curtis integration is then used on all
subintervals which have g or b as one of their end-points (Piessens et al. [2]). On the other
subintervals Gauss-Kronrod (7-15 point) integration is carried out.

A ‘global’ acceptance criterion (as defined by Malcolm and Simpson [1]) is used. The local
error estimation control is described by Piessens er al. [3].

References

[1] MALCOLM, M.A. and SIMPSON, R.B.
Local Versus Global Strategies for Adaptive Quadrature.
A.C.M. Trans. Math. Software, 1, pp. 129-146, 1976.

[2] PIESSENS, R., MERTENS, 1. and BRANDERS, M.
Integration of Functions having Endpoint Singularities.
Angewandte Informatik, 16, pp. 65-68, 1974.
[3] PIESSENS, R., DE DONCKER-KAPENGA, E. UBERHUBER, C and KAHANER, D.

QUADPACK, A Subroutine Package for Automatic Integration.
Springer-Verlag, 1983.

[NP1692/14] Page !

DO1APF DO1 — Quadrature

S. Parameters

1: G - real FUNCTION, supplied by the user. External Procedure
G must return the value of the function g at a given point X.
Its specification is:

real FUNCTION G(X)
real X

I: X -real Input
On entry: the point at which the function g must be evaluated.

G must be declared as EXTERNAL in the (sub)program from which DO1APF is called.
Parameters denoted as Input must not be changed by this procedure.

22 A-—real Input
On entry: the lower limit of integration, a.

3: B -—real Input
On entry: the upper limit of integration, b.
Constraint: B > A.

4. ALFA - real. Input
On entry. the parameter ¢ in the weight function.
Constraint: ALFA > -1,

5. BETA - real. Input
On entry: the parameter f in the weight function.
Constraint: BETA > —1.

6: KEY — INTEGER. Input
On entry: indicates which weight function is to be used:

if KEY = 1, w(x) = (x—a)*(b-x)*?

if KEY = 2, w(x) = (x—a)*(b—x)? In(x—a)

if KEY = 3, w(x) = (x—a)*(b-x)? In(b—x)

if KEY = 4, w(x) = (x—a)*(b—x)? In(x-a) In(b—x)

Constraint: KEY =1,2,3 or 4

7: EPSABS - real. Input

On entry: the absolute accuracy required. If EPSABS is negative, the absolute value is used.
See Section 7.

8: EPSREL - real. Input
On entry. the relative accuracy required. If EPSREL is negative, the absolute value is used.
See Section 7.

9: RESULT - real. Output
On exit: the approximation to the integral /.

10: ABSERR - real. Output
On exit: an estimate of the modulus of the absolute error, which should be an upper bound
for |[[-RESULT]|.

Page 2 (NP1692/14)

DO1 — Quadrature DO1APF

11:

12:

13:

14:

15:

W(LW) — real array. Qutput
On exit: details of the computation, as described in Section 8.

LW — INTEGER. Input

Onentry: the dimension of the array W as declared in the (sub)program from which
DO1APF is called. The value of LW (together with that of LIW below) imposes a bound on
the number of subintervals into which the interval of integration may be divided by the
routine. The number of subintervals cannot exceed LW/4. The more difficult the integrand,
the larger LW should be.

Suggested value: LW = 800 to 2000 is adequate for most problems.
Constraint. LW 2 8.

IW(LIW) — INTEGER array. Output

On exit: IW (1) contains the actual number of subintervals used. The rest of the array is used
as workspace.

LIW — INTEGER. Input

Onentry: the dimension of the array IW as declared in the (sub)program from which
DO1APF is called. The number of subintervals into which the interval of integration may be
divided cannot exceed LIW.

Suggested value: LIW = LW/4.
Constraint: LIW 2 2.

IFAIL — INTEGER. Input/ Output
On entry: IFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter
should refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).
For this routine, because the values of output parameters may be useful even if IFAIL # 0

on exit, users are recommended to set IFAIL to —1 before entry. It is then essential to test
the value of IFAIL on exit.

Error Indicators and Warnings
Errors or warnings specified by the routine:

If on entry IFAIL = O or -1, explanatory error messages are output on the current error message

unit (as defined by X04AAF).

IFAIL = 1
The maximum number of subdivisions allowed with the given workspace has been reached
without the accuracy requirements being achieved. Look at the integrand in order to
determine the integration difficulties. If the position of a discontinuity or a singularity of
algebraico-logarithmic type within the interval can be determined, the interval must be split
up at this point and the integrator called on the subranges. If necessary, another integrator,
which is designed for handling the difficulty involved, must be used. Alternatively consider
relaxing the accuracy requirements specified by EPSABS and EPSREL, or increasing the
amount of workspace.

IFAIL = 2

Roundoff error prevents the requested tolerance from being achieved. Consider requesting
less accuracy.

IFAIL = 3

Extremely bad local integrand behaviour causes a very strong subdivision around one (or
more) points of the interval. The same advice applies as in the case of IFAIL = 1.

[NP1692/14] Page 3

DO1APF DO1 — Quadrature

IFAIL = 4
Onentry, B < A,
or ALFA < -1,
or BETA < -1,
or KEY < 1,
or KEY > 4.
IFAIL = 5
On entry, LW < 8,
or LIW < 2.

7. Accuracy

The routine cannot guarantee, but in practice usually achieves, the following accuracy:
|I-RESULT| < tol,

where
tol = max{|EPSABS|,|[EPSREL|x|/|},

and EPSABS and EPSREL are user-specified absolute and relative error tolerances.

Moreover it returns the quantity ABSERR which, in normal circumstances, satisfies:
|[I-RESULT| < ABSERR < tol.

8. Further Comments
The time taken by the routine depends on the integrand and on the accuracy required.
If IFAIL # O on exit, then the user may wish to examine the contents of the array W, which
contains the end-points of the subintervals used by DO1APF along with the integral contributions
and error estimates over these subintervals.
Specifically, for i = 1,2,...,n, let r; denote the approximation to the value of the integral over the
subinterval [a;,b;] in the partition of [4,b] and e, be the corresponding absolute error estimate.

i=1

b, n
Then, J f(x)w(x)dx = r; and RESULT = Y r,. The value of n is returned in IW (1), and the

values a;, b;, e; and r; are stored consecutively in the array W, that is:

;= W),
b, = W(n+i),
e; = W(2n+i),
r W(3n+i).

9. Example
To compute:

' sin(10x)

1
jo Inx cos(10mx)dx and jo ()

Page 4 [NP1692/14)

DOI — Quadrature DO1APF

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO1APF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER LW, LIW
PARAMETER (LW=800, LIW=LW/4)
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalars in Common ..
INTEGER KOUNT, NOF
* .. Local Scalars ..
real A, ABSERR, B, EPSABS, EPSREL, RESULT
INTEGER IFAIL
* .. Local Arrays ..
real ALFA(2), BETA(2), W(LW)
INTEGER INTEGR(2), IW(LIW)
* .. External Functions ..
real FST
EXTERNAL FST
* .. External Subroutines ..
EXTERNAL DO1APF
* .. Common blocks ..
COMMON /TELNUM/KOUNT, NOF
* .. Data statements ..
DATA ALFA/0.0e0, -0.5e0/
DATA BETA/0.0e0, -0.5€0/
DATA INTEGR/2, 1/
* .. Executable Statements ..

WRITE (NOUT,*) ’‘DOlAPF Example Program Results’
EPSABS = 0.0e0
EPSREL = 1.0e-04

A = 0.0e0
B = 1.0e0
DO 20 NOF = 1, 2
KOUNT = 0
IFAIL = -1
*
CALL DOlAPF(FST,A,B,ALFA(NOF),BETA(NOF), INTEGR(NOF),EPSABS,
+ EPSREL, RESULT, ABSERR, W, LW, IW, LIW, IFAIL)
*
WRITE (NOUT, *)
WRITE (NOUT, 99999) ‘A — lower limit of integration = ’, A
WRITE (NOUT,99999) ’'B - upper limit of integration = ’, B
WRITE (NOUT, 99998) ’'EPSABS - absolute accuracy requested = ',
+ EPSABS
WRITE (NOUT, 99998) 'EPSREL - relative accuracy requested = ',
+ EPSREL

WRITE (NOUT, *)
WRITE (NOUT,99998)

+ "ALFA - parameter in the weight function = ’, ALFA(NOF)
WRITE (NOUT, 99998)

+ ’BETA - parameter in the weight function = ’, BETA(NOF)
WRITE (NOUT, 99997)

+ "INTEGR - denotes which weight function is to be used = ’,

+ INTEGR (NOF) ’

WRITE (NOUT, *)
IF (IFAIL.NE.O) WRITE (NOUT,99997) ’IFAIL = ’, IFAIL
IF (IFAIL.LE.3) THEN

WRITE (NOUT, 99996)

+ 'RESULT - approximation to the integral = ’, RESULT
WRITE (NOUT,99998)
+ "ABSERR — estimate of the absolute error = ’, ABSERR

[NP1692/14]) Page 5

DO1APF

+

+

D01 — Quadrature

WRITE (NOUT,99997)

"KOUNT - number of function evaluations = ’, KOUNT
WRITE (NOUT,99997) "IW(l) - number of subintervals used = ’
s IW(1)
END IF

20 CONTINUE

STOP

99999 FORMAT (1X,A,F10.4)
99998 FORMAT (1X,A,e9.2)
99997 FORMAT (1X,A,I4)

99996 FORMAT (1X,A,F9.5)

END

real

real

FUNCTION FST(X)

Scalar Arguments ..

X

Scalars in Common ..

INTEGER KOUNT, NOF

real

real

Local Scalars ..

A, OMEGA, PI

External Functions ..

X01AAF

EXTERNAL X01AAF

Intrinsic Functions ..

INTRINSIC COS, SIN

Common blocks ..

COMMON /TELNUM/KOUNT, NOF

Executable Statements ..

PI = X01AAF(PI)

KOUNT = KOUNT + 1

IF (NOF.EQ.l) THEN
A = 10.0e0*PI

END

FST = COS(A*X)
ELSE

OMEGA = 10.0e0

FST = SIN(OMEGA*X)

IF

RETURN

END

9.2. Program Data

None.

9.3. Program Results
DO1APF Example Program Results

A -
B -
EPSABS -
EPSREL -

ALFA -
BETA -
INTEGR -

RESULT -
ABSERR -
KOUNT
IW(1)

Page 6

lower limit of integration = 0.0000
upper limit of integration = 1.0000
absolute accuracy requested = 0.00E+00
relative accuracy requested = 0.10E-03

parameter in the weight function = 0.00E+00
parameter in the weight function = 0.00E+00
denotes which weight function is to be used = 2

approximation to the integral = -0.04899
estimate of the absolute error 0.11E-06
number of function evaluations 110
number of subintervals used = 4

[NP1692/14)

D01 - Quadrature

D01APF

A - lower limit of integration = 0.0000
B - upper limit of integration = 1.0000
EPSABS - absolute accuracy requested = 0.00E+00
EPSREL - relative accuracy requested = 0.10E-03
ALFA — parameter in the weight function = -0.50E+00
BETA — parameter in the weight function = -0.50E+00
INTEGR — denotes which weight function is to be used =
RESULT - approximation to the integral = 0.53502
ABSERR - estimate of the absolute error = (0.19E-11
KOUNT - number of function evaluations = 50
IW(l) - number of subintervals used = 2

[NP1692/14)

Page 7 (last)

DO1 — Quadrature DO1AQF

DO01AQF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose
DO1AQF calculates an approximation to the Hilbert transform of a function g(x) over [a,b]:
b
[=| 8% 4
xX-c
a
for user-specified values of a, b and c.
Specification
SUBROUTINE DO1AQF (G, A, B, C, EPSABS, EPSREL, RESULT, ABSERR, W,
1 LW, IW, LIW, IFAIL)
INTEGER LW, IW(LIW), LIW, IFAIL
real G, A, B, C, EPSABS, EPSREL, RESULT, ABSERR,
1 W(LW)
EXTERNAL G
Description

DO1AQF is based upon the QUADPACK routine QAWC (Piessens et al. [3]) and integrates a
function of the form g(x)w(x), where the weight function
1
xX=-c

is that of the Hilbert transform. (If @ < ¢ < b the integral has to be interpreted in the sense of
a Cauchy principal value.) It is an adaptive routine which employs a ‘global’ acceptance
criterion (as defined by Malcolm and Simpson [1]). Special care is taken to ensure that c is never
the end-point of a subinterval (Piessens et al. [2]). On each subinterval (c,,c,) modified
Clenshaw-Curtis integration of orders 12 and 24 is performed if ¢, — d < ¢ < ¢, + d where
d = (c,—c,)/20. Otherwise the Gauss seven-point and Kronrod 15-point rules are used. The
local error estimation is described by Piessens er al. [3].

w(x) =

References

[1] MALCOLM, M.A. and SIMPSON, R.B.
Local Versus Global Strategies for Adaptive Quadrature.
A.C.M. Trans. Math. Software, 1, pp. 129-146, 1976.

[2] PIESSENS, R., VAN ROY-BRANDERS, M. and MERTENS, 1.
The Automatic Evaluation of Cauchy Principal Value Integrals.
Angewandte Informatik, 18, pp. 31-35, 1976.

[3] PIESSENS, R., DE DONCKER-KAPENGA, E., UBERHUBER, C. and KAHANER, D.
QUADPACK, A Subroutine Package for Automatic Integration.
Springer-Verlag, 1983.

[NP1692/14] Page 1

DO01AQF DOI — Quadrature

5. Parameters

1: G —real FUNCTION, supplied by the user. External Procedure
G must return the value of the function g at a given point.
Its specification is:

real FUNCTION G(X)
real X

I: X -real Input
On entry: the point at which the function g must be evaluated.

G must be declared as EXTERNAL in the (sub)program from which DO1AQF is called.
Parameters denoted as /nput must not be changed by this procedure.

22 A —real Input
On entry: the lower limit of integration, a.

3: B -—real Input
On entry: the upper limit of integration, b. It is not necessary that a < b.

4 C-real Input
On entry: the parameter c in the weight function.
Constraint. C must not equal A or B.

5: EPSABS - real. Input

On entry: the absolute accuracy required. If EPSABS is negative, the absolute value is used.
See Section 7.

6: EPSREL - real. Input
On entry: the relative accuracy required. If EPSREL is negative, the absolute value is used.
See Section 7.

7 RESULT - real. Output
On exit: the approximation to the integral I.

8: ABSERR - real. Output
On exit: an estimate of the modulus of the absolute error, which should be an upper bound
for |[-RESULT)]|.

9: W(LW) - real array. Output

On exit: details of the computation, as described in Section 8.

10: LW — INTEGER. Input

Onentry: the dimension of the array W as declared in the (sub)program from which
DO1AQF is called. The value of LW (together with that of LIW below) imposes a bound on
the number of subintervals into which the interval of integration may be divided by the
routine. The number of subintervals cannot exceed LW /4. The more difficult the integrand,
the larger LW should be.

Suggested value: LW = 800 to 2000 is adequate for most problems.
Constraint: LW 2 4.

11: IW(LIW) — INTEGER array. Output

On exit: TW (1) contains the actual number of subintervals used. The rest of the array is used
as workspace.

Page 2 [NP1692/14)

D0I — Quadrature D01AQF

122 LIW — INTEGER. Input

Onentry. the dimension of the array IW as declared in the (sub)program from which
DO1AQF is called. The number of subintervals into which the interval of integration may be
divided cannot exceed LIW.

Suggested value: LIW = LW/4,
Constraint: LIW 2 1.

13: IFAIL — INTEGER. Input/ Output

On entry: IFAIL must be set to 0, —1 or 1. Users who are unfamiliar with this parameter
should refer to Chapter P01 for details.

Onexit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL # 0
on exit, users are recommended to set IFAIL to —1 before entry. It is then essential to test
the value of IFAIL on exit.

6. Error Indicators and Warnings
Errors or warnings specified by the routine:
If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message

unit

(as defined by X04AAF).

IFAIL =1

The maximum number of subdivisions allowed with the given workspace has been reached
without the accuracy requirements being achieved. Look at the integrand in order to
determine the integration difficulties. Another integrator which is designed for handling the
type of difficulty involved, must be used. Alternatively consider relaxing the accuracy
requirements specified by EPSABS and EPSREL, or increasing the workspace.

IFAIL = 2

Roundoff error prevents the requested tolerance from being achieved. Consider requesting
less accuracy.

IFAIL = 3

Extremely bad local behaviour of g(x) causes a very strong subdivision around one (or
more) points of the interval. The same advice applies as in the case of IFAIL = 1.

IFAIL = 4

Onentry, C = AorC = B.

IFAIL = 5

On entry, LW < 4,
or LIW < 1.

7. Accuracy
The routine cannot guarantee, but in practice usually achieves, the following accuracy:

|I-RESULT| < tol,

where

tol = max{|EPSABS|,|[EPSREL|x||}

and EPSABS and EPSREL are user-specified absolute and relative error tolerances. Moreover it
returns the quantity ABSERR which, in normal circumstances satisfies:

[NP1692/14]

|I-RESULT| < ABSERR < 10l.

Page 3

DO01AQF DOI — Quadrature

8. Further Comments
The time taken by the routine depends on the integrand and on the accuracy required.

If IFAIL # O on exit, then the user may wish to examine the contents of the array W, which
contains the end-points of the subintervals used by DO1AQF along with the integral contributions
and error estimates over these subintervals.

Specifically, for i = 1,2,...,n, let r; denote the approximation to the value of the integral over the

subinterval [a,,b;] in the partition of [a,b] and e; be the corresponding absolute error estimate.
b.

Then, I g(x)w(x)dx = r; and RESULT = Y, r,. The value of # is returned in IW(1), and the
o i=1

values a;, b;, e; and r; are stored consecutively in the array W, that is:
a, = W(),
b, = W(n+i),
e; = W(2n+i) and
r, = W(Q3n+i).

9. Example

To compute the Cauchy principal value of

1
J dx
L (x240.012) (x—3)

9.1. Program Text

Note: the listing of the example program presented below uscs bold italicised tcrms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO1AQF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER LW, LIW
PARAMETER (LW=800,LIW=LW/4)
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalars in Common ..
INTEGER KOUNT
* .. Local Scalars ..
real A, ABSERR, B, C, EPSABS, EPSREL, RESULT
INTEGER IFAIL
* .. Local Arrays ..
real W(LW)
INTEGER IW(LIW)
* .. External Functions ..
real FST
EXTERNAL FST
* .. External Subroutines ..
EXTERNAL DO1AQF
* .. Common blocks ..
COMMON /TELNUM/KOUNT
* .. Executable Statements ..

WRITE (NOUT,*) ’'DO1lAQF Example Program Results’
EPSABS = 0.0e0

EPSREL = 1.0e-04

A -1.0e0

B 1.0e0

C 0.5e0

KOUNT = 0

IFAIL = -1

Page 4 [NP1692/14]

DO!I — Quadrature

D01AQF

CALL DO1AQF (FST,A,B,C,EPSABS, EPSREL, RESULT, ABSERR, W, LW, IW, LIW,

+ IFAIL)

*
WRITE (NOUT, %)
WRITE (NOUT,99999) ’aA - lower limit of integration ="', A
WRITE (NOUT,99999) ’B — upper limit of integration ‘', B
WRITE (NOUT,99998) ’'EPSABS - absolute accuracy requested = ',
+ EPSABS
WRITE (NOUT,99998) ’EPSREL - relative accuracy requested = ',
+ EPSREL
WRITE (NOUT,b99998) ’C — parameter in the weight function = ’/,
+ C

WRITE (NOUT, x)

IF (IFAIL.NE.(Q) WRITE (NOUT,99996) ’IFAIL = ', IFAIL

IF (IFAIL.LE.3) THEN
WRITE (NOUT,99997) 'RESULT - approximation to the integral = ',

+ RESULT
WRITE (NOUT,99998) ’ABSERR —
+ , ABSERR
WRITE (NOUT,99996) ’KOUNT -
+ , KOUNT
WRITE (NOUT,99996) ‘IW(1l) -
+ IW(1)
END IF
STOP

99999 FORMAT (1X,A,F10.4)

99998 FORMAT (1X,A,e9.2)

99997 FORMAT (1X,A,F9.2)

99996 FORMAT (1X,A,Id)
END

real FUNCTION FST(X)

.. Scalar Arguments ..

real X

Scalars in Common ..

INTEGER KOUNT

Local Scalars ..

real AA

Common blocks ..

COMMON /TELNUM/KOUNT

Executable Statements ..

KOUNT = KOUNT + 1

AA = 0.01e0

FST = 1.0e0/(X**2+AA*xx2)
RETURN

END

9.2. Program Data

None.

9.3. Program Results

DO1AQF

A
B
EPSABS
EPSREL
C

RESULT
ABSERR
KOUNT
IW(1l)

Example Program Results

— lower limit of integration =
— upper limit of integration =

absolute accuracy requested =
relative accuracy requested =

-1
1

.0000
.0000

0.00E+00
0.10E-03

— parameter in the weight function

estimate of the absolute error
number of function evaluations
number of subintervals used =

approximation to the integral =

8

0.50E+00

—-628.46
0.13E-01
255

estimate of the absolute error = ’
number of function evaluations = ’

number of subintervals used = ’,

[NP1692/14)

Page 5 (last)

DO1 - Quadrature DO1ARF

DO1ARF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

3.1

Purpose

DO1ARF computes definite and indefinite integrals over a finite range to a specified relative or
absolute accuracy, using the method described by Patterson.

Specification
SUBROUTINE DO1ARF (A, B, FUN, RELACC, ABSACC, MAXRUL, IPARM, ACC, ANS,
1 N, ALPHA, IFAIL)
INTEGER MAXRUL, IPARM, N, IFAIL
real A, B, FUN, RELACC, ABSACC, ACC, ANS, ALPHA(390)
EXTERNAL FUN

Description

This routine evaluates definite and indefinite integrals of the form:

b
J f() ar
using the method described by Patterson [1].

Definite Integrals

In this case the routine must be called with IPARM = 0. By linear transformation the integral is
changed to,

+1
I=J F(x) dx
1

where F(x) = 5 2

and is then approximated by an n-point quadrature rule,
I=3w, F(x,)
k=1

where w, are the weights and x, are the abscissae.

b-a f(b+a+ (b—a)x)

The routine uses a family of 9 interlacing rules based on the optimal extension of the three-point
Gauss rule. These rules use 1, 3, 7, 15, 31, 63, 127, 255 and 511 points and have respective
polynomial integrating degrees 1, 5, 11, 23, 47, 95, 191, 383 and 767. Each rule has the property
that the next in sequence includes all the points of its predecessor and has the greatest possible
increase in integrating degree.

The integration method is based on the successive application of these rules until the absolute
value of the difference of two successive results differs by not more than ABSACC, or relatively
by not more than RELACC. The result of the last rule used is taken as the value of the integral
(ANS), and the absolute difference of the results of the last two rules used is taken as an
estimate of the absolute error (ACC). Due to their interlacing form no integrand evaluations are
wasted in passing from one rule to the next.

[NP1692/14) Page 1

DO1ARF DO1 — Quadrature

3.2. Indefinite Integrals
Suppose the value of the integral,

d
J f(e) ar

is required for a number of subintervals [c,d], all of which lie in a interval [a,b].

In this case the routine should first be called with the parameter IPARM = 1 and the interval set
to [a,b]. The routine then calculates the integral over [a,b] and the Legendre expansion of the
integrand, using the same integrand values. If the routine is subsequently called with
IPARM = 2 and the interval set to [c,d], the integral over [c,d] is calculated by analytical
integration of the Legendre expansion, without further evaluations of the integrand.

For the interval [-1,1] the expansion takes the form,
F(x) = X o; Pi(x)
i=0

where P, (x) is the order i Legendre polynomial. Assuming that the integral over the full range
[-1,1] was evaluated to the required accuracy using an n-point rule, then the coefficients,
+1

o; = §(2i-1) J P;(x) F(x) dx, i=0,l1,.m
-1

are evaluated by that same rule, up to
m = (3n-1)/4.

The accuracy for indefinite integration should be of the same order as that obtained for the
definite integral over the full range. The indefinite integrals will be exact when F(x) is a
polynomial of degree < m.

4. References

[1] PATTERSON, T.N.L.
The Optimum Addition of Points to Quadrature Formulae.
Math. Comp., 22, pp. 847-856, 1968.

5. Parameters
1: A -real Input
On entry: the lower limit of integration, a.

22 B -—real Input
On entry: the upper limit of integration, b. It is not necessary that a < b.

3: FUN - real FUNCTION, supplied by the user. External Procedure
FUN must evaluate the integrand f at a specified point.
Its specification is:

real FUNCTION FUN(X)
real X

1: X —real.
On entry: the point in [a,b] at which the integrand must be evaluated.

FUN must be declared as EXTERNAL in the (sub)program from which DO1ARF is called.
Parameters denoted as Input must not be changed by this procedure.

If IPARM = 2, FUN is not called.

Page 2 [NP1692/14)

DOI - Quadrature DO01ARF

10:

11:

RELACC - real. Input

On entry: the relative accuracy required. If convergence according to absolute accuracy is
required, RELACC should be set to zero (but see also Section 7). If RELACC < 0.0, its
absolute value is used.

If IPARM = 2, RELACC is not used.

ABSACC - real. Input

On entry: the absolute accuracy required. If convergence according to relative accuracy is
required, ABSACC should be set to zero (but see also Section 7). If ABSACC < 0.0, its
absolute value is used.

If IPARM = 2, ABSACC is not used.

MAXRUL - INTEGER. Input
On entry: the maximum number of successive rules that may be used.

Constraint: 1 < MAXRUL < 9. If MAXRUL is outside these limits, the value 9 is
assumed.

If IPARM = 2, MAXRUL is not used.

IPARM - INTEGER. Input
On entry: IPARM indicates the task to be performed by the routine:
if IPARM = 0, only the definite integral over [a,b] is evaluated.

if IPARM = 1, as well as the definite integral, the expansion of the integrand in
Legendre polynomials over [a,b] is calculated, using the same values of the integrand
as used to compute the integral. The expansion coefficients, and some other quantities,
are returned in ALPHA for later use in computing indefinite integrals.

if IPARM = 2, f(z) is integrated analytically over [a,b] using the previously computed
expansion, stored in ALPHA. No further evaluations of the integrand are required. The
routine must previously have been called with [IPARM = 1 and the interval [a,b] must
lie within that specified for the previous call. In this case only the arguments A, B,
IPARM, ANS, ALPHA and IFAIL are used.

Constraint: IPARM = 0, 1 or 2.

ACC - real. Output

On exit: if IPARM = 0 or 1, ACC contains the absolute value of the difference between the
last two successive estimates of the integral. This may be used as a measure of the accuracy
actually achieved.

If IPARM = 2, ACC is not used.

ANS - real. Qutput
On exit: the estimated value of the integral.

N — INTEGER. Output

On exit: when IPARM = 0 or 1, N contains the number of integrand evaluations used in the
calculation of the integral.

If IPARM = 2, N is not used.

ALPHA (390) — real array. Input/ Output

Onentry: if IPARM = 2, ALPHA must contain the coefficients of the Legendre expansions
of the integrand, as returned by a previous call of DO1ARF with IPARM = 1 and a range
containing the present range. If IPARM = 0 or 1, ALPHA need not be set on entry.

Onexit: if IPARM = 1, the first m elements of ALPHA hold the coefficients of the
Legendre expansion of the integrand, and the value of m is stored in ALPHA((390).

[NP2478/16] Page 3

DO1ARF DO1 - Quadrature

ALPHA must not be changed between a call with IPARM = 1 and subsequent calls with
IPARM = 2,

If IPARM = 2, the first m elements of ALPHA are unchanged on exit.

12: IFAIL - INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, —1 or 1. Users who are unfamiliar with this parameter
should refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL # 0
on exit, users are recommended to set IFAIL to -1 before entry. It is then essential to test
the value of IFAIL on exit. To suppress the output of an error message when soft failure
occurs, set IFAIL to 1.

6. Error Indicators and Warnings
Errors or warnings specified by the routine:
IFAIL =1

If IPARM = 0 or 1, this indicates that all MAXRUL rules have been used and the integral
has not converged to the accuracy requested. In this case ANS contains the last
approximation to the integral, and ACC contains the difference between the last two
approximations. To check this estimate of the integral, DO1ARF could be called again to
evaluate,

b c b
J‘ f(t) dt as J‘ f(e) dt +j f(t) dt forsomea < ¢ < b.

If IPARM = 2, this indicates failure of convergence during the run with IPARM = 1 in
which the Legendre expansion was created.

IFAIL = 2
On entry, IPARM < 0 or IPARM > 2,

IFAIL = 3

The routine is called with IPARM = 2 but a previous call with IPARM = 1 has been
omitted or was invoked with an integration interval of length zero.

IFAIL = 4

On entry, with IPARM = 2, the interval for indefinite integration is not contained within
the interval specified when the routine was previously called with IPARM = 1.

7. Accuracy

The relative or absolute accuracy required is specified by the user in the variables RELACC or
ABSACC. The routine will terminate whenever either the relative accuracy specified by
RELACC or the absolute accuracy specified by ABSACC is reached. One or other of these
criteria may be ‘forced’ by setting the parameter for the other to zero. If both RELACC and
ABSACC are specified as zero, then the routine uses the value 10.0x (machine precision) for
RELACC.

If on exit IFAIL = O, then it is likely that the result is correct to one or other of these accuracies.
If on exit IFAIL = 1, then it is likely that neither of the requested accuracies has been reached.

When the user has no prior idea of the magnitude of the integral, it is possible that an
unreasonable accuracy may be requested, e.g. a relative accuracy for an integral which turns out
to be zero, or a small absolute accuracy for an integral which turns out to be very large. Even if
failure is reported in such a case, the value of the integral may still be satisfactory. The device of
setting the other ‘unused’ accuracy parameter to a small positive value (e.g. 10~ for an
implementation of 11-digit precision) rather than zero, may prevent excessive calculation in such
a situation.

Page 4 [NP2478/16)

DOl

9.1.

— Quadrature DO1ARF

To avoid spurious convergernce, it is recommended that relative accuracies larger than about 107
be avoided.

Further Comments

The time taken by the routine depends on the complexity of the integrand and the accuracy
required.

This routine uses the Patterson method over the whole integration interval and should therefore

be suitable for well behaved functions. However, for very irregular functions it would be more
efficient to submit the differently behaved regions separately for integration.

Example
The program evaluates the following integrals:
(i) Definite integral only (IPARM = 0) for

jl gy (ABSACC = 10°%).
0 1tx
(ii) Definite integral together with expansion coefficients (IPARM = 1) for
[(4x ax (ABSACC = 10°%).
(ili) Indefinite integral using previous expansion (IPARM = 2) for
[035 ax (ABSACC = 10°%).
Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO1lARF Example Program Text
* Mark 16 Revised. NAG Copyright 1993.
* .. Parameters
INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER MAXRUL
PARAMETER (MAXRUL=0)
* .. Local Scalars ..
real A, ABSACC, ACC, ANS, B, RELACC
INTEGER IFAIL, IPARM, N
* .. Local Arrays ..
real ALPHA(390)
* .. External Functions ..
real Fl, F2
EXTERNAL Fl, F2
* .. External Subroutines
EXTERNAL DO1ARF
* .. Executable Statements ..

WRITE (NOUT,*) ’‘DOlARF Example Program Results’
RELACC = 0.0e0
ABSACC = 1.0e-5
* Definite integral of Fl(x) — no expansion
IPARM = 0
IFAIL = 1
A = 0.0e0
B = 1.0e0
WRITE (NOUT, *)
WRITE (NOUT,*) ’‘Definite integral of 4/(1+x*x) over (0,1)’

CALL DO1ARF (A, B,F1l,RELACC, ABSACC, MAXRUL, IPARM, ACC,ANS, N, ALPHA,
+ IFAIL)

[NP2478/16) Page S

DO1ARF DOI - Quadrature

IF (IFAIL.NE.Q) WRITE (NOUT,99997) ’'DOlARF fails. IFAIL =/, IFAIL

IF (IFAIL.LE.1l) THEN
WRITE (NOUT,99999) ’Estimated value of the integral =’, ANS
WRITE (NOUT,99998) ‘Estimated absolute error =’, ACC
WRITE (NOUT,99997) ’‘Number of points used =’, N

END IF

* Definite integral of F2(x) — with expansion

IPARM = 1

IFAIL = 1

A = 1.0e0

B = 2.0e0

WRITE (NOUT, *)

WRITE (NOUT,*) ’‘Definite integral of x*x(1/8) over (1,2)’

CALL DOlARF(A,B,F2, RELACC, ABSACC, MAXRUL, IPARM, ACC, ANS, N, ALPHA,
+ IFAIL)

IF (IFAIL.NE.0) WRITE (NOUT,99997) ’DOlARF fails. IFAIL =/ IFAIL

IF (IFAIL.LE.l) THEN
WRITE (NOUT,99999) ’Estimated value of the integral =’, ANS
WRITE (NOUT,99998) ’'Estimated absolute error =’, ACC
WRITE (NOUT,99997) ’‘Number of points used =’, N

END IF

* Indefinite integral of F2(x)

IPARM = 2

IFAIL = 0

A = 1.2e0

B = 1.8e0

WRITE (NOUT, *)

WRITE (NOUT,*) ’'Indefinite integral of x**(1/8) over (1.2,1.8)’

CALL DO1ARF(A,B,F2,RELACC,ABSACC,MAXRUL, IPARM, ACC, ANS, N, ALPHA,
+ IFAIL)

WRITE (NOUT,99999) ’Estimated value of the integral =’, ANS
STOP

99999 FORMAT (1X,A,F9.5)

99998 FORMAT (1X,A,el0.2)

99997 FORMAT (1X,A,I4)
END

real FUNCTION F1(X)

* .. Scalar Arguments ..
real X

* .. Executable Statements ..
Fl = 4.0e0/(1.0e0+X*X)
RETURN
END

real FUNCTION F2(X)
* .. Scalar Arguments ..
real X
* .. Executable Statements ..
F2 = X*%x(0.,125€0
RETURN
END

9.2. Program Data
None.

Page 6 [NP2478/16)

DOI — Quadrature DO01ARF

9.3. Program Results
DO1lARF Example Program Results

Definite integral of 4/(l+x*x) over (0,1)
Estimated value of the integral = 3.14159
Estimated absolute error = 0.18E-07
Number of points used = 15

Definite integral of x**(1/8) over (1,2)
Estimated value of the integral = 1.04979
Estimated absolute error = 0.59E-06
Number of points used = 7

Indefinite integral of x**(1/8) over (1.2,1.8)
Estimated value of the integral = 0.63073

[NP2478/16) Page 7 (last)

DOI1 - Quadrature DO1ASF

DO01ASF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

DO1ASF calculates an approximation to the sine or the cosine transform of a function g over
[a,0):

I= j g(x)sin(x)dx or I = j g(x) cos(ax)dx

(for a user-specified value of).

Specification
SUBROUTINE DO1ASF (G, A, OMEGA, KEY, EPSABS, RESULT, ABSERR, LIMLST,
1 LST, ERLST, RSLST, IERLST, W, LW, IW, LIW, IFAIL)
INTEGER KEY, LIMLST, LST, IERLST(LIMLST), LW, IW(LIW), LIW,
1 IFAIL
real G, A, OMEGA, EPSABS, RESULT, ABSERR, ERLST(LIMLST),
1 RSLST(LIMLST), W(LW)
EXTERNAL G
Description

DO1ASF is based upon the QUADPACK routine QAWFE (Piessens et al. [2]). It is an adaptive
routine, designed to integrate a function of the form g(x)w(x) over a semi-infinite interval,
where w(x) is either sin(ax) or cos(ax). Over successive intervals

C, = [a+(k=1)c, a+kc], k=1.2,.LST

integration is performed by the same algorithm as is used by DO1ANF. The intervals C, are of
constant length

¢ = {2[|w|]+1}7/ |2, o %0,
where [|w]|] represents the largest integer less than or equal to |@|. Since ¢ equals an odd number
of half periods, the integral contributions over succeeding intervals will alternate in sign when
the function g is positive and monotonically decreasing over [a,o0). The algorithm, described by
[2], incorporates a global acceptance criterion (as defined by Malcolm and Simpson [1])
together with the &-algorithm (Wynn [3]) to perform extrapolation. The local error estimation is
described by Piessens et al. [2].
If o=0 and KEY =1, the routine uses the same algorithm as DO1AMF (with
EPSREL = 0.0).
In contrast to the other routines in Chapter D01, DO1ASF works only with a user-specified
absolute error tolerance (EPSABS). Over the interval C, it attempts to satisfy the absolute
accuracy requirement

EPSA, = U, XEPSABS,

where U, = (1-p)p*™', fork = 1,2,...and p = 0.9.

However, when difficulties occur during the integration over the kth sub-interval C, such that the
error flag IERLST (k) is non-zero, the accuracy requirement over subsequent intervals is relaxed.
See Piessens et al. [2] for more details.

[NP2136/15] Page 1

DO1ASF DOI - Quadrature

4.

References

[1] MALCOLM, M.A. and SIMPSON, R.B.
Local Versus Global Strategies for Adaptive Quadrature.
ACM Trans. Math. Softw., 1, pp. 129-146, 1976.

[2] PIESSENS, R., DE DONCKER-KAPENGA, E., UBERHUBER. C. and KAHANER, D.
QUADPACK, A Subroutine Package for Automatic Integration.
Springer-Verlag, 1983.

[3] WYNN, P.
On a Device for Computing the e,, (S,) Transformation.
Math. Table Aids Comput., 10, pp. 91-96, 1956.

Parameters

G — real FUNCTION, supplied by the user. External Procedure
G must return the value of the function g at a given point.
Its specification is:

real FUNCTION G(X)
real X

1: X —real. Input
On entry: the point at which the function g must be evaluated.

G must be declared as EXTERNAL in the (sub)program from which DO1ASF is called.
Parameters denoted as Input must not be changed by this procedure.

A —real. Input
On entry: the lower limit of integration, a.

OMEGA - real. Input
On entry: the parameter @ in the weight function of the transform.

KEY - INTEGER. Input
On entry: indicates which integral is to be computed:
if KEY = 1, w(x) = cos(ax);
if KEY = 2, w(x) = sin(ax).
Constraint: KEY =1 or 2.

EPSABS - real. Input

On entry: the absolute accuracy requirement. If EPSABS is negative, the absolute value is
used. See Section 7.

RESULT - real. Output
On exit: the approximation to the integral /.

ABSERR - real. Output
On exit: an estimate of the modulus of the absolute error, which should be an upper bound
for |[-RESULT].

LIMLST — INTEGER. Input
On entry: an upper bound on the number of intervals C, needed for the integration.
Suggested value: LIMLST = 50 is adequate for most problems.

Constraint: LIMLST 2 3.

Page 2 [NP2136/15)

DOI1 — Quadrature DO1ASF

9:

10:

11:

12:

13:
14:

15:

16:

17:

LST — INTEGER. Output
On exit: the number of intervals C, actually used for the integration.

ERLST(LIMLST) — real array. Output

Onexit: ERLST(k) contains the error estimate corresponding to the integral contribution
over the interval C,, for k = 1,2,...,LST.

RSLST(LIMLST) — real array. Output

Onexit: RSLST(k) contains the integral contribution over the interval C, for
k=1.2,.LST.

IERLST(LIMLST) — INTEGER array. Output

Onexit: IERLST(k) contains the error flag corresponding to RSLST(k), for
k = 1,2,..,.LST. See Section 6.

W(LW) - real array. Workspace
LW — INTEGER. Input

Onentry: the dimension of the array W as declared in the (sub)program from which
DO1ASEF is called. The value of LW (together with that of LIW below) imposes a bound on
the number of sub-intervals into which each interval C, may be divided by the routine. The
number of sub-intervals cannot exceed LW/4. The more difficult the integrand, the larger
LW should be.

Suggested value: a value in the range 800 to 2000 is adequate for most problems.
Constraint: LW 2 4.

IW(LIW) — INTEGER array. Output

Onexit: IW(1) contains the maximum number of sub-intervals actually used for integrating
over any of the intervals C,. The rest of the array is used as workspace.

LIW — INTEGER. Input

On entry: the dimension of the array IW as declared in the (sub)program from which
DO1ASF is called. The number of sub-intervals into which each interval C, may be divided
cannot exceed LIW/2.

Suggested value: LIW = LW/2.
Constraint: LIW 2 2.

IFAIL — INTEGER. Input/ Output

On entry: IFAIL must be set to 0, —1 or 1. Users who are unfamiliar with this parameter
should refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL # 0
on exit, users are recommended to set IFAIL to —1 before entry. It is then essential to test
the value of IFAIL on exit.

Error Indicators and Warnings
Errors or warnings specified by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

[NP2136/15] Page 3

DO1ASF DO! — Quadrature

IFAIL = 1

The maximum number of subdivisions allowed with the given workspace has been reached
without the accuracy requirements being achieved. Look at the integrand in order to
determine the integration difficulties. If the position of a local difficulty within the interval
can be determined (e.g. a singularity of the integrand or its derivative, a peak, a
discontinuity, etc.) you will probably gain from splitting up the interval at this point and
calling DO1ASF on the infinite subrange and an appropriate integrator on the finite
subrange. Alternatively, consider relaxing the accuracy requirements specified by EPSABS
or increasing the amount of workspace.

IFAIL = 2

Round-off error prevents the requested tolerance from being achieved. The error may be
underestimated. Consider requesting less accuracy.

IFAIL = 3

Extremely bad local integrand behaviour causes a very strong subdivision around one (or
more) points of the interval. The same advice applies as in the case of IFAIL = 1.

IFAIL = 4

The requested tolerance cannot be achieved, because the extrapolation does not increase the
accuracy satisfactorily; the returned result is the best which can be obtained. The same
advice applies as in the case of IFAIL = 1. Look at the integrand in order to determine the
integration difficulties. If the position of a local difficulty within the interval can be
determined (e.g. a singularity of the integrand or its derivative, a peak, a discontinuity ...)
you will probably gain from splitting up the interval at this point and calling DO1ASF on the
infinite subrange and an appropriate integrator on the finite subrange. Alternatively,
consider relaxing the accuracy requirements specified by EPSABS or increasing the amount
of workspace.

Please note that divergence can occur with any non-zero value of IFAIL.

IFAIL = 5

The integral is probably divergent, or slowly convergent. Please note that divergence can
occur with any non-zero value of IFAIL.

IFAIL = 6

On entry, KEY < 1,

or KEY > 2,

or LIMLST < 3.
IFAIL = 7

Bad integration behaviour occurs within one or more of the intervals C,. Location and type
of the difficulty involved can be determined from the vector IERLST (see below).

IFAIL = 8

Maximum number of intervals C, (= LIMLST) allowed has been achieved. Increase the
value of LIMLST to allow more cycles.

IFAIL = 9

The extrapolation table constructed for convergence acceleration of the series formed by the
integral contribution over the intervals C,, does not converge to the required accuracy.

Page 4 [NP2136/15)

D01 — Quadrature DO1ASF

9.1.

IFAIL = 10
On entry, LW < 4,
or LIW < 2.

In the cases IFAIL = 7, 8 or 9, additional information about the cause of the error can be
obtained from the array IERLST, as follows:

IERLST(k) = 1
The maximum number of subdivisions = min(LW/4,LIW/2) has been achieved on the kth
interval.

IERLST(k) = 2

Occurrence of round-off error is detected and prevents the tolerance imposed on the kth
interval from being achieved.

IERLST(k) = 3
Extremely bad integrand behaviour occurs at some points of the kth interval.
IERLST (k) = 4

The integration procedure over the kth interval does not converge (to within the required
accuracy) due to round-off in the extrapolation procedure invoked on this interval. It is
assumed that the result on this interval is the best which can be obtained.

IERLST(k) =5

The integral over the kth interval is probably divergent or slowly convergent. It must be
noted that divergence can occur with any other value of IERLST (k).

Accuracy
The routine cannot guarantee, but in practice usually achieves, the following accuracy:
|[-RESULT| < |EPSABS]|.

where EPSABS is the user-specified absolute error tolerance. Moreover, it returns the quantity
ABSERR, which, in normal circumstances, satisfies

|[-RESULT| < ABSERR < |EPSABS).

Further Comments
None.

Example

L]

1
To computej —= cos(mx/2)dx.
. W

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO1ASF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters .
INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER LW, LIW, LIMLST
PARAMETER (LW=800, LIW=LW/2, LIMLST=50)
* .. Scalars in Common ..
INTEGER KOUNT

[NP2136/15] Page 5

DO1ASF

Page 6

+

+

+

+

D01 - Quadrature

.. Local Scalars ..

real A, ABSERR, EPSABS, OMEGA, RESULT
INTEGER IFAIL, INTEGR, LST

.. Local Arrays ..

real ERLST(LIMLST), RSLST(LIMLST), W(LW)
INTEGER IERLST(LIMLST), IW(LIW)

.. External Functions ..

real FST, XO01lAAF

EXTERNAL FST, XO0lAAF

.. External Subroutines ..

EXTERNAL DO1lASF

.. Common blocks ..

COMMON /TELNUM/KOUNT

.. Executable Statements ..

WRITE (NOUT,*) "DOlASF Example Program Results’
EPSABS = 1.0e-03

A = 0.0e0

KOUNT = 0

OMEGA = 0.5e0*X01AAF(0.0e0)

INTEGR = 1

IFAIL = -1

CALL DOl1ASF(FST,A,OMEGA, INTEGR, EPSABS, RESULT, ABSERR, LIMLST, LST,

ERLST, RSLST, IERLST,W, LW, IW, LIW, IFAIL)
WRITE (NOUT, *)
WRITE (NOUT,99999) A — lower limit of integration = 7, a
WRITE (NOUT,*) ’'B — upper limit of integration = infinity’

WRITE (NOUT,99998) 'EPSABS - absolute accuracy requested = ’,
EPSABS

WRITE (NOUT, *)

IF (IFAIL.NE.O) WRITE (NOUT,99996) /IFAIL = ’, IFAIL

IF (IFAIL.NE.6 .AND. IFAIL.NE.10) THEN

WRITE (NOUT,99997) ’'RESULT - approximation to the integral = ’,

RESULT

WRITE (NOUT,99998) ’'ABSERR - estimate of the absolute error = ’

» ABSERR

WRITE (NOUT,99996) ’KOUNT - number of function evaluations = ’

+ , KOUNT

+ +

99999
99998
99997
99996

WRITE (NOUT,99996) ‘LST — number of intervals used = ’/, LST
WRITE (NOUT,99996)

"IW(l) - max. no. of subintervals used in any one interval = '

, IW(1)
END IF
STOP

FORMAT (1X,A,F10.4)
FORMAT (1X,A,€9.2)
FORMAT (1X,A,F9.5)
FORMAT (1X,A,I4)
END

real FUNCTION FST(X)
.. Scalar Arguments ..

real X

.. Scalars in Common ..

INTEGER KOUNT

.. Intrinsic Functions ..
INTRINSIC SQRT

.. Common blocks ..

COMMON /TELNUM/KOUNT

.. Executable Statements ..
KOUNT = KOUNT + 1

FST = 0.0e0

IF (X.GT.0.0e0) FST = 1.0e0/SQRT(X)
RETURN

END

[NP2136/15)

DOQI — Quadrature DO1ASF

9.2. Program Data
None.

9.3. Program Results
DO1ASF Example Program Results

A - lower limit of integration = 0.0000
B - upper limit of integration = infinity
EPSABS - absolute accuracy requested = 0.10E-02

RESULT - approximation to the integral = 1.00000

ABSERR — estimate of the absolute error = 0.59E-03

KOUNT - number of function evaluations = 380

LST — number of intervals used = 6

IW(1l) - max. no. of subintervals used in any one interval = 8

[NP2136/15] Page 7 (last)

DOl — Quadrature DO1ATF

DO1ATF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

DOI1ATF is a general-purpose integrator which calculates an approximation to the integral of a
function f(x) over a finite interval [a,b]:

b
I= j fx) dx.
a
Specification
SUBROUTINE DO1ATF (F, A, B, EPSABS, EPSREL, RESULT, ABSERR, W,
1 LW, IW, LIW, IFAIL)
INTEGER LW, IW(LIW), LIW, IFAIL
real A, B, EPSABS, EPSREL, RESULT, ABSERR, W(LW)
EXTERNAL F
Description

DO1ATF is based upon the QUADPACK routine QAGS (Piessens et al. [3]). It is an adaptive
routine, using the Gauss 10-point and Kronrod 21-point rules. The algorithm, described by
de Doncker [1], incorporates a global acceptance criterion (as defined by Malcolm and Simpson
[2]) together with the e-algorithm (Wynn [4]) to perform extrapolation. The local error
estimation is described by Piessens ez al. [3].

The routine is suitable as a general purpose integrator, and can be used when the integrand has
singularities, especially when these are of algebraic or logarithmic type.

The routine requires a user-supplied subroutine to evaluate the integrand at an array of different
points and is therefore particularly efficient when the evaluation can be performed in vector
mode on a vector-processing machine. Otherwise the algorithm is identical to that used by
DO1AJF.

References

[1] DE DONCKER, E.
An Adaptive Extrapolation Algorithm for Automatic Integration.
Signum Newsletter, 13, 2, pp. 12-18, 1978.

[2] MALCOLM, M.A. and SIMPSON, R.B.

Local Versus Global Strategies for Adaptive Quadrature.
ACM Trans. Math. Softw., 1, pp. 129-146, 1976.

[3] PIESSENS, R., DE DONCKER-KAPENGA, E., UBERHUBER, C. and KAHANER, D.
QUADPACK, A Subroutine Package for Automatic Integration.
Springer-Verlag, 1983.
[4] WYNN,P.
On a Device for Computing the e, (S,) Transformation.
Math. Tables Aids Comput., 10, pp. 91-96, 1956.

[NP2136/15] Page 1

DO1ATF DOI — Quadrature

5. Parameters

I: F — SUBROUTINE, supplied by the user. External Procedure
F must return the values of the integrand f at a set of points.

Its specification is:
SUBROUTINE F (X, FV, N)
INTEGER N
real X(N), FV(N)
I: X(N) - real array. Input
On entry: the points at which the integrand f must be evaluated.
2 FV(N) - real array. Output
On exit: FV(j) must contain the value of f at the point X(j), for j = 1,2,...N.
3: N - INTEGER. Input
Onentry: the number of points at which the integrand is to be evaluated. The
actual value of N is always 21.
F must be declared as EXTERNAL in the (sub)program from which DO1ATF is called.
Parameters denoted as /nput must not be changed by this procedure.

22 A-—real Input
On entry: the lower limit of integration, a.

3: B -real Input
On entry: the upper limit of integration, b. It is not necessary that a < b.

4: EPSABS - real. Input
On entry: the absolute accuracy required. If EPSABS is negative, the absolute value is used.
See Section 7.

5: EPSREL - real. Input
On entry: the relative accuracy required. If EPSREL is negative, the absolute value is used.
See Section 7.

6: RESULT - real. Output
On exit: the approximation to the integral /.

7. ABSERR - real. | Output
On exit: an estimate of the modulus of the absolute error, which should be an upper bound
for |I-RESULT)].

8: W(LW) - real array. Output
On exit: details of the computation, as described in Section 8.

9: LW — INTEGER. Input

Page 2

Onentry: the dimension of the array W as declared in the (sub)program from which
DO1ATF is called. The value of LW (together with that of LIW below) imposes a bound on
the number of sub-intervals into which the interval of integration may be divided by the
routine. The number of sub-intervals cannot exceed LW/4. The more difficult the integrand,
the larger LW should be.

Suggested value: a value in the range of 800 to 2000 is adequate for most problems.
Constraint: LW 2 4,

[NP2136/15)

DOI — Quadrature DO01ATF

10: IW(LIW) — INTEGER array. Output

On exit: IW(1) contains the actual number of sub-intervals used. The rest of the array is
used as workspace.

11: LIW — INTEGER. Input

Onentry: the dimension of the array IW as declared in the (sub)program from which
DO1ATF is called. The number of sub-intervals into which the interval of integration may be
divided cannot exceed LIW.

Suggested value: LIW = LW/4.
Constraint: LIW 2 1.

12: IFAIL — INTEGER. Input/ Output
On entry: TFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter
should refer to Chapter PO1 for details.

On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL # 0
on exit, users are recommended to set IFAIL to 1 before entry. It is then essential to test
the value of IFAIL on exit.

6. Error Indicators and Warnings

Errors or warnings specified by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message

unit (as defined by X04AAF).

IFAIL = 1
The maximum number of subdivisions allowed with the given workspace has been reached
without the accuracy requirements being achieved. Look at the integrand in order to
determine the integration difficulties. If the position of a local difficulty within the interval
can be determined (e.g. a singularity of the integrand or its derivative, a peak, a
discontinuity, etc.) you will probably gain from splitting up the interval at this point and
calling the integrator on the subranges. If necessary, another integrator, which is designed
for handling the type of difficulty involved, must be used. Alternatively, consider relaxing
the accuracy requirements specified by EPSABS and EPSREL, or increasing the amount of
workspace.

IFAIL = 2

Round-off error prevents the requested tolerance from being achieved. The error may be
underestimated. Consider requesting less accuracy.

IFAIL = 3

Extremely bad local integrand behaviour causes a very strong subdivision around one (or
more) points of the interval. The same advice applies as in the case of IFAIL = 1.

IFAIL = 4

The requested tolerance cannot be achieved, because the extrapolation does not increase the
accuracy satisfactorily; the returned result is the best which can be obtained. The same
advice applies as in the case of IFAIL = 1.

IFAIL = 5

The integral is probably divergent, or slowly convergent. Please note that divergence can
occur with any non-zero value of IFAIL.

[NP2136/15] Page 3

DO1ATF D01 — Quadrature

9.1.

Page 4

IFAIL = 6
On entry, LW < 4,
or LIW < 1.
Accuracy

The routine cannot guarantee, but in practice usually achieves, the following accuracy:
|[I-RESULT| < tol
where
tol = max{|EPSABS|,|[EPSREL|x|/|}
and EPSABS and EPSREL are user-specified absolute and relative error tolerance. Moreover it
returns the quantity ABSERR which, in normal circumstances, satisfies
[I-RESULT| < ABSERR < 1ol.

Further Comments

If IFAIL # O on exit, then the user may wish to examine the contents of the array W, which
contains the end-points of the sub-intervals used by DOIATF along with the integral
contributions and error estimates over the sub-intervals.

Specifically, for i = 1,2,...,n, let r; denote the approximation to the value of the integral over the
sub-interval [a;,b;], in the partition of [a,b], and e, be the corresponding absolute error estimate.

b, n
Then, J f(x) dx = r; and RESULT =) r,, unless DO1ATF terminates while testing for
a i=1

divergence of the integral (see Piessens et al. [3], Section 3.4.3). In this case, RESULT (and
ABSERR) are taken to be the values returned from the extrapolation process. The value of » is
returned in IW (1), and the values of a;, b,, e, and r; are stored consecutively in the array W, that
is:

i = W(i) ’

= W(n+i),

= W(2n+i) and

= W(3n+i).

a
b
€;
T

Example
To compute

J " xsin(30x)
0

—— dx
V1-(x/27)*

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO1ATF Example Program Text
* Mark 14 Revised. NAG Copyright 1989,
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER LW, LIW
PARAMETER (LW=800, LIN=LW/4)
* .. Scalars in Common ..
real PI
INTEGER KOUNT

[NP2136/15)

D01 - Quadrature DO1ATF

99999
99998
99997
99996

(NP2834117)

.. Local Scalars ..

real A, ABSERR, B, EPSABS, EPSREL, RESULT
INTEGER IFAIL

.. Local Arrays ..

real W(LW)

INTEGER IW(LIW)

.. External Functions ..

real X01AAF

EXTERNAL X01AAF

.. External Subroutines ..
EXTERNAL DO1ATF, FST

.. Common blocks ..

COMMON /TELNUM/PI, KOUNT

.. Executable Statements ..

WRITE (NOUT,*) ’‘DO1ATF Example Program Results’
PI = X01AAF(0.0e0)

EPSABS = 0.0e0

EPSREL = 1.0e-04

A = 0.0e0

B = 2.0e0*PI

KOUNT = 0

IFAIL = -1

CALL DO1ATF(FST,A,B,EPSABS, EPSREL, RESULT, ABSERR, W, LW, IW, LIW, IFAIL)

WRITE (NOUT, *)

WRITE (NOUT,99999) ‘A - lower limit of integration = ’/, A
WRITE (NOUT,99999) ’B - upper limit of integration = “/, B
WRITE (NOUT,99998) ‘EPSABS - absolute accuracy requested = 7,
+ EPSABS

WRITE (NOUT,99998) ’‘EPSREL - relative accuracy requested = 7,
+ EPSREL

WRITE (NOUT, *)
IF (IFAIL.NE.O) WRITE (NOUT,99996) ‘IFAIL = ’, IFAIL
IF (IFAIL.LE.5) THEN

WRITE (NOUT,99997) ‘RESULT - approximation to the integral = ’,
+ RESULT

WRITE (NOUT,99998) ’ABSERR - estimate of the absolute error = ~
+ , ABSERR i

WRITE (NOUT,b99996)

+ /KOUNT - number of function evaluations = ‘, KOUNT
WRITE (NOUT,99996) ‘IW(1) - number of subintervals used = 7,
+ IW(1)
END IF
STOP
FORMAT (1X,A,F10.4)
FORMAT (1X,A,e9.2)
FORMAT (1X,A,F9.5)
FORMAT (1X,A,I4)
END

SUBROUTINE FST(X,FV,N)
.. Scalar Arguments ..

INTEGER N

.. Array Arguments ..

real FV(N), X(N)
.. Scalars in Common ..
real PI

INTEGER KOUNT

.. Local Scalars ..
INTEGER I

.. Intrinsic Functions ..
INTRINSIC SIN, SQRT
.. Common blocks ..

COMMON /TELNUM/PI, KOUNT

Page 5

DO1ATF D01 - Quadrature

* .. Executable Statements ..
KOUNT = KOUNT + N
DO 20 I =1, N
FV(I) = X(I)*SIN(30.0e0*X(I))/SQRT(1.0e0-X(I)**2/(4.0e0*PIx*2))
20 CONTINUE
RETURN
END

9.2. Program Data
None.

9.3. Program Results
DOT1ATF Example Program Results

A - lower limit of integration = 0.0000

B - upper limit of integration = 6.2832
EPSABS - absolute accuracy requested = 0.00E+00
EPSREL - relative accuracy requested = 0.10E-03
RESULT - approximation to the integral = -2.54326
ABSERR - estimate of the absolute error = 0.13E-04
KOUNT - number of function evaluations = 777
IW(1) - number of subintervals used = 19

Page 6 (last) [NP2834117)

DOI — Quadrature DO01AUF

DO1AUF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

DO1AUF is an adaptive integrator, especially suited to oscillating, non-singular integrands, which
calculates an approximation to the integral of a function f(x) over a finite interval [a,b]:

b
I= J‘ f(x) dx.
a
Specification
SUBROUTINE DO1AUF (F, A, B, KEY, EPSABS, EPSREL, RESULT, ABSERR,
1 W, LW, IW, LIW, IFAIL)
INTEGER KEY, LW, IW(LIW), LIW, IFAIL
real A, B, EPSABS, EPSREL, RESULT, ABSERR, W(LW)
EXTERNAL F
Description

DO1AUF is based upon the QUADPACK routine QAG (Piessens et al. [3]). It is an adaptive
routine, offering a choice of six Gauss-Kronrod rules. A global acceptance criterion (as defined
by Malcolm and Simpson [1]) is used. The local error estimation is described by Piessens ez al.
[31.

Because this routine is based on integration rules of high order, it is especially suitable for
non-singular oscillating integrands.

The routine requires a user-supplied subroutine to evaluate the integrand at an array of different
points and is therefore particularly efficient when the evaluation can be performed in vector
mode on a vector-processing machine. Otherwise this algorithm with KEY = 6 is identical to
that used by DO1AKF.

References

[1] MALCOLM, M.A. and SIMPSON, R.B.
Local Versus Global Strategies for Adaptive Quadrature.
A.C.M. Trans. Math. Software, 1, pp. 129-146, 1975.

[2] PIESSENS, R.
An Algorithm for Automatic Integration.
Angewandte Informatik, 15, pp. 399-401, 1973.

[3] PIESSENS, R., DE DONCKER-KAPENGA, E., UBERHUBER, C. and KAHANER, D.
QUADPACK, A Subroutine Package for Automatic Integration.
Springer-Verlag, 1983.

Parameters

F — SUBROUTINE, supplied by the user. External Procedure
F must return the values of the integrand f at a set of points.
Its specification is:

SUBROUTINE F (X, FV, N)
INTEGER N
real X(N), FV(N)

1: X(N) - real array. Input
On entry: the points at which the integrand f must be evaluated..

[NP1692/14] Page |

DO1AUF DOI1 — Quadrature

10:

Page 2

2: FV(N) - real array. Output
On exit: FV(j) must contain the value of f at the point X(j), for j = 1,2,...,N.
3: N - INTEGER. Input

Onentry: the number of points at which the integrand is to be evaluated. The
actual value of N is equal to the number of points in the Kronrod rule (see
specification of KEY below).

F must be declared as EXTERNAL in the (sub)program from which DO1AUF is called.
Parameters denoted as Inpur must not be changed by this procedure.

A —real. Input
On entry: the lower limit of integration, a.

B — real. Input
On entry: the upper limit of integration, b. It is not necessary that ¢ < b.

KEY — INTEGER. Input
On entry: which integration rule is to be used:
if KEY = 1 for the Gauss 7-point and Kronrod 15-point rule,

if KEY = 2 for the Gauss 10-point and Kronrod 21-point rule,
if KEY = 3 for the Gauss 15-point and Kronrod 31-point rule,
if KEY = 4 for the Gauss 20-point and Kronrod 41-point rule,
if KEY = 5 for the Gauss 25-point and Kronrod 51-point rule,
if KEY = 6 for the Gauss 30-point and Kronrod 61-point rule.

Suggested value: KEY = 6.
Constraint: KEY = 1,2,3,4,5 or 6.

EPSABS - real. Input
On entry: the absolute accuracy required. If EPSABS is negative, the absolute value is used.
See Section 7.

EPSREL - real. Input

On entry: the relative accuracy required. If EPSREL is negative, the absolute value is used.
See Section 7.

RESULT - real. Output
On exit: the approximation to the integral /.

ABSERR - real. Output
On exit: an estimate of the modulus of the absolute error, which should be an upper bound
|[I-RESULT]|.

W(LW) — real array. Output

On exit: details of the computation, as described in Section 8.

LW — INTEGER. Input

Onentry: the dimension of the array W as declared in the (sub)program from which
DO1AUF is called. The value of LW (together with that of LIW below) imposes a bound on
the number of subintervals into which the interval of integration may be divided by the
routine. The number of subintervals cannot exceed LW/4. The more difficult the integrand,
the larger LW should be.

[NP1692/14]

DO1 — Quadrature DO01AUF

Suggested value: a value in the range 800 to 2000 is adequate for most problems.
Constraint: LW 2 4.

11: IW(LIW) — INTEGER array. Output
Onexit: IW(1) contains the actual number of subintervals. The rest of the array is used as
workspace.

122 LIW — INTEGER. Input
Onentry: the dimension of the array IW as declared in the (sub)program from which
DO1AUF is called.

The number of subintervals into which the interval of integration may be divided cannot
exceed LIW.

Suggested value: LIW = LW/4.
Constraint: LIW 2 1.

13: IFAIL — INTEGER. Input/ Output

On entry: IFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter
should refer to Chapter P01 for details.

Onexit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL # 0
on exit, users are recommended to set IFAIL to —1 before entry. It is then essential to test
the value of IFAIL on exit.

6. Error Indicators and Warnings
Errors or warnings specified by the routine:

If on entry IFAIL = O or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL = 1

The maximum number of subdivisions allowed with the given workspace has been reached
without the accuracy requirements being achieved. Look at the integrand in order to
determine the integration difficulties. Probably another integrator which is designed for
handling the type of difficulty involved must be used. Alternatively, consider relaxing the
accuracy requirements specified by EPSABS and EPSREL, or increasing the amount of
workspace.

IFAIL = 2
Roundoff error prevents the requested tolerance from being achieved. Consider requesting
less accuracy.

IFAIL = 3

Extremely bad local integrand behaviour causes a very strong subdivision around one (or
more) points of the interval. The same advice applies as in the case of IFAIL = 1.

IFAIL = 4
On entry, KEY < 1,
or KEY > 6.
IFAIL = 5
On entry, LW < 4,
or LIW < 1.

[NP1692/14) Page 3

DO1AUF DO! — Quadrature

7. Accuracy
The routine cannot guarantee, but in practice usually achieves, the following accuracy:
[I-RESULT| < tol
where
tol = max{|EPSABS|,|[EPSREL|x|I|},

and EPSABS and EPSREL are user-specified absolute and relative error tolerances. Moreover it
returns the quantity ABSERR which, in normal circumstances satisfies

[I-RESULT| < ABSERR < 1ol.

8. Further Comments

If IFAIL # O on exit, then the user may wish to examine the contents of the array W, which
contains the end-points of the subintervals used by DO1AUF along with the integral contributions
and error estimates over these subintervals.

Specifically, for i = 1,2,...,n, let r; denote the approximation to the value of the integral over the
subinterval [a;,b,] in the partition of [a,b], and e, be the corresponding absolute error estimate.
b,

Then, J f(x)dx = r; and RESULT = Y r,. The value of n is returned in IW (1), and the values
a i=1

a;, b;, e; and r; are stored consecutively in the array W, that is:
a; = W(i),

W(n+i),

= W(2n+i) and

W(3n+i).

Q-A
]

i

)
|

X
I

1

9. Example
To compute

2n
J x sin(30x) cosx dx.
0

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO1AUF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER LW, LIW
PARAMETER (LW=800, LIW=LW/4)
* .. Scalars in Common ..
INTEGER KOUNT
* .. Local Scalars ..
real A, ABSERR, B, EPSABS, EPSREL, PI, RESULT
INTEGER IFAIL, KEY
* .. Local Arrays
real W(LW)
INTEGER IW(LIW)
* .. External Functions
real X01AAF
EXTERNAL X01AAF
* .. External Subroutines ..
EXTERNAL DO1AUF, FST
* .. Common blocks
COMMON /TELNUM/KOUNT

Page 4 [NP1692/14)

DOI - Quadrature DO1AUF

99999
99998
99997
99996

20

.. Executable Statements ..

WRITE (NOUT,*) ‘DOlAUF Example Program Results’
PI = X01AAF(0.0e0)

EPSABS = 0.0e0

EPSREL = 1.0e-03

A = 0.0e0

B = 2.0e0*xPI

KEY = 6

KOUNT
IFAIL

0
-1

CALL DOlAUF(FST,A,B,KEY,EPSABS, EPSREL, RESULT, ABSERR, W, LW, IW, LIW,
+ IFAIL)

WRITE (NOUT, *)

WRITE (NOUT, 99999) A - lower limit of integration = ', A
WRITE (NOUT,99999) ’B - upper limit of integration = ‘', B
WRITE (NOUT,99998) ‘EPSABS - absolute accuracy requested = ',
+ EPSABS

WRITE (NOUT,99998) ’'EPSREL - relative accuracy requested = ',
+ EPSREL

WRITE (NOUT, *)
IF (IFAIL.NE.O) WRITE (NOUT,99996) ’'IFAIL = ', IFAIL
IF (IFAIL.LE.3) THEN
WRITE (NOUT,99997) ‘RESULT - approximation to the integral = '/,
+ RESULT
WRITE (NOUT, 99998) ’'ABSERR
+ , ABSERR
WRITE (NOUT, 99996) ’‘KOUNT
+ , KOUNT
WRITE (NOUT,99996) "IW(1l)
+ IW(1l)
END IF
STOP

estimate of the absolute error = '

number of function evaluations = '

number of subintervals used = '/,

FORMAT (1X,A,F10.4)
FORMAT (1X,A,e9.2)
FORMAT (1X,A,F9.5)
FORMAT (1X,A,I4)
END

SUBROUTINE FST(X,FV,N)
.. Scalar Arguments ..

INTEGER N

.. Array Arguments ..

real FV(N), X(N)
.. Scalars in Common ..
INTEGER KOUNT

.. Local Scalars ..
INTEGER I

.. Intrinsic Functions ..
INTRINSIC COS, SIN

.. Common blocks ..

COMMON /TELNUM/KOUNT

.. Executable Statements
KOUNT = KOUNT + N
DO 20I =1, N
FV(I) = X(I)*(SIN(30.0e0*X(I)))*COS(X(I))
CONTINUE
RETURN
END

9.2. Program Data

None.

[NP1692/14)

Page 5

DO01AUF

9.3. Program Results

DO1AUF

A
B
EPSABS
EPSREL

RESULT
ABSERR
KOUNT
IW(1l)

Example Program Results

- lower limit of integration = 0.0000

— upper limit of integration = 6.2832

- absolute accuracy requested = 0.00E+00

- relative accuracy requested = 0.10E-02

— approximation to the integral = -0.20967
- estimate of the absolute error = 0.45E-13
- number of function evaluations = 427

- number of subintervals used = 4

D01 — Quadrature

Page 6 (last)

[NP1692/14]

DOI — Quadrature DO1BAF

DO01BAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

3.2.

33.

Purpose

DO1BAF computes an estimate of the definite integral of a function of known analytical form,
using a Gaussian quadrature formula with a specified number of abscissae. Formulae are
provided for a finite interval (Gauss-Legendre), a semi-infinite interval (Gauss-Laguerre,
Gauss-Rational), and an infinite interval (Gauss-Hermite).

Specification
real FUNCTION DO1BAF (DO1XXX, A, B, N, FUN, IFAIL)

INTEGER N, IFAIL
real A, B, FUN
EXTERNAL DO1XXX, FUN

Description

. General

This routine evaluates an estimate of the definite integral of a function f(x), over a finite or
infinite range, by n-point Gaussian quadrature (see Davis and Rabinowitz [1], Froberg (2],
Ralston [3] or Stroud and Secrest [4]). The integral is approximated by a summation

_"le,- fx,)

where the w; are called the weights, and the x; the abscissae. A selection of values of n is
available. (See Section 5.)

Both Limits Finite

j f(x)dx

a

The Gauss-Legendre weights and abscissae are used, and the formula is exact for any function of
the form:
2n-1

f(x) = Y Cixi
=0

The formula is appropriate for functions which can be well approximated by such a polynomial
over [a,b]. It is inappropriate for functions with algebraic singularities at one or both ends of the
interval, such as (1+x)~"? on [-1,1].

One Limit Infinite

J f(x)dx or J f(x)dx

Two quadrature formulae are available for these integrals.
(a) The Gauss-Laguerre formula is exact for any function of the form:

2n-1
flx) =™ Y cxi
i=0

This formula is appropriate for functions decaying exponentially at infinity; the parameter b
should be chosen if possible to match the decay rate of the function.

[NP2136/15] Page 1

DO01BAF DO! — Quadrature

(b) The Gauss-Rational formula is exact for any function of the form:

21)
w Z‘o Comi (X+b)’
f) = % (x+b)' (x4b) P

This formula is likely to be more accurate for functions having only an inverse power rate
of decay for large x. Here the choice of a suitable value of b may be more difficult;
unfortunately a poor choice of b can make a large difference to the accuracy of the
computed integral.

3.4. Both Limits Infinite

J f(x)dx

The Gauss-Hermite weights and abscissae are used, and the formula is exact for any function of
the form:

2n-1
fx) = e 3 e
i=0

Again, for general functions not of this exact form, the parameter b should be chosen to match if
possible the decay rate at toe.

4. References

[1] DAVIS, P.J. and RABINOWITZ, P.
Numerical Integration.
Blaisdell Publishing Company, pp. 33-52, 1967.

[2] FROBERG, C.E.
Introduction to Numerical Analysis.
Addison-Wesley, pp. 181-187, 1965.

[3] RALSTON, A.
A First Course in Numerical Analysis.
McGraw-Hill, pp. 87-90, 1965.

[4] STROUD, A.H. and SECREST, D.
Gaussian Quadrature Formulas.
Prentice-Hall, 1966.

5. Parameters
I: DO1XXX — SUBROUTINE, supplied by the NAG Fortran Library. External Procedure
The name of the routine indicates the quadrature formula:

DO1BAZ, for Gauss-Legendre quadrature on a finite interval;
DO1BAY, for Gauss-Rational quadrature on a semi-infinite interval;
DO1BAX, for Gauss-Laguerre quadrature on a semi-infinite interval;
DO1BAW, for Gauss-Hermite quadrature on an infinite interval.

The name used must be declared as EXTERNAL in the (sub)program from which DO1BAF
is called.

In certain implementations, to avoid name clashes between single and double precision
versions, names of auxiliary routines have been changed, e.g. DO1BAX to BAXDOI. Please
refer to the Users’ Note for your implementation.

Page 2 [NP2136/15)

DOI - Quadrature DO1BAF

22 A —real Input
3: B - real. Input

On entry: the parameters g and b which occur in the integration formulae:
Gauss-Legendre:

a is the lower limit and b is the upper limit of the integral. It is not necessary that
a <b.

Gauss-Rational:

b must be chosen so as to make the integrand match as closely as possible the
exact form given in Section 3.3(b). The range of integration is [a,0) if
a+b>0 and (—o,a]ifa + b <0.

Gauss-Laguerre:

b must be chosen so as to make the integrand match as closely as possible the
exact form given in Section 3.3(a). The range of integration is [a,e0) if b > 0,
and (—oo,a]lis b < 0.

Gauss-Hermite:

a and b must be chosen so as to make the integrand match as closely as possible
the exact form given in Section 3.4.

Constraints: Gauss-Rational: A + B # 0,
Gauss-Laguerre: B # 0,
Gauss-Hermite: B > 0.

4: N - INTEGER. Input

On entry. the number of abscissae to be used, n.
Constraint: N = 1,2,34,5,6,8,10,12,14,16,20,24,32,48 or 64.

5: FUN - real FUNCTION, supplied by the user. External Procedure
FUN must return the value of the integrand f at a given point.
Its specification is:

real FUNCTION FUN(X)
real X

1: X -—real Input
On entry: the point at which the integrand must be evaluated.

FUN must be declared as EXTERNAL in the (sub)program from which DO1BAF is called.
Parameters denoted as Input must not be changed by this procedure.

Some points to bear in mind when coding FUN are mentioned in Section 7.

6: IFAIL — INTEGER. Input/ Output
On entry: IFAIL must be set to 0, —1 or 1. Users who are unfamiliar with this parameter
should refer to Chapter P01 for details.

Onexit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL # 0
on exit, users are recommended to set IFAIL to —1 before entry. It is then essential to test
the value of IFAIL on exit. To suppress the output of an error message when soft failure
occurs, set IFAIL to 1.

[NP2136/15] Page 3

DO01BAF DOI - Quadrature

6. Error Indicators and Warnings
Errors or warnings specified by the routine:
IFAIL =1

The N-point rule is not among those stored. If the soft fail option is used, the answer is
evaluated for the largest valid value of N less than the requested value.

IFAIL = 2
The value of A and/or B is invalid.

Gauss-Rational: A + B = 0.
Gauss-Laguerre: B = 0.
Gauss-Hermite: B < 0.

If the soft fail option is used, the answer is returned as zero.

7. Accuracy

The accuracy depends on the behaviour of the integrand, and on the number of abscissae used.
No tests are carried out in the routine to estimate the accuracy of the result. If such an estimate
is required, the routine may be called more than once, with a different number of abscissae each
time, and the answers compared. It is to be expected that for sufficiently smooth functions a
larger number of abscissae will give improved accuracy.

Alternatively, the range of integration may be subdivided, the integral estimated separately for
each sub-interval, and the sum of these estimates compared with the estimate over the whole
range.

The coding of the function FUN may also have a bearing on the accuracy. For example, if a
high-order Gauss-Laguerre formula is used, and the integrand is of the form

fx) = e™g(x)
it is possible that the exponential term may underflow for some large abscissae. Depending on
the machine, this may produce an error, or simply be assumed to be zero. In any case, it would
be better to evaluate the expression as:

f(x) = exp(—bx+lng(x))
Another situation requiring care is exemplified by

00
j e x"dx = 0, m odd.

—0a

The integrand here assumes very large values; for example, for m = 63, the peak value exceeds
3x10%. Now, if the machine holds floating-point numbers to an accuracy of k significant
decimal digits, we could not expect such terms to cancel in the summation leaving an answer of
much less than 10** (the weights being of order unity); that is instead of zero, we obtain a
rather large answer through rounding error. Fortunately, such situations are characterised by great
variability in the answers returned by formulae with different values of n. In general, the user
should be aware of the order of magnitude of the integrand, and should judge the answer in that
light.

8. Further Comments

The time taken by the routine depends on the complexity of the expression for the integrand and
on the number of abscissae required.

Page 4 [NP2136/15]

DO1 - Quadrature DO01BAF

9. Example
This example program evaluates the integrals

1
I 42dx=n’
0 14x

by Gauss-Legendre quadrature;

p 1

J, x’Inx

by Gauss-Rational quadrature with b = 0;

dx = 0.378671

£ ax = 0048901
v2
by Gauss-Laguerre quadrature with b = 1; and

p +oo

400
b tent g j eI 2 gy = 1 428167

Y_eo —o0

by Gauss-Hermite quadrature with @ = —1 and b = 3.
The formulae with n = 4,8,16 are used in each case.

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO1BAF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Local Scalars ..
real A, ANS, B
INTEGER I, IFAIL
* .. Local Arrays ..
INTEGER NSTOR(3)
* .. External Functions ..
real DO1BAF, FUN1l, FUN2, FUN3, FUN4
EXTERNAL DO1BAF, FUN1l, FUN2, FUN3, FUN4
* .. External Subroutines ..
EXTERNAL DO1BAW, DO1BAX, DO1BAY, DO1BAZ
* .. Data statements ..
DATA NSTOR/4, 8, 16/
* .. Executable Statements ..

WRITE (NOUT,*) ‘DO1BAF Example Program Results’
WRITE (NOUT, *)
WRITE (NOUT,*) ’Gauss-Legendre example’
DO 20 I =1, 3
A = 0.0e0
B = 1.0e0
IFAIL = 1

ANS = DO1BAF(DO1BAZ,A,B,NSTOR(I),FUN1,IFAIL)
IF (IFAIL.NE.O) THEN
WRITE (NOUT,99998) ’IFAIL = ’, IFAIL

WRITE (NOUT, *)
END IF

[NP2136/15) Page

DO1BAF

D01 — Quadrature

IF (IFAIL.LE.1l) WRITE (NOUT,99999) NSTOR(I),

+ ! Points Answer = ’, ANS

20

CONTINUE
WRITE (NOUT, *)
WRITE (NOUT, *)
WRITE (NOUT,*) ’‘Gauss-Rational example’
DO 40 I =1, 3
A = 2.0e0
B = 0.0e0
IFAIL = 1

ANS = DO1BAF(DO1BAY,A,B,NSTOR(I),FUN2,IFAIL)

IF (IFAIL.NE.O) THEN
WRITE (NOUT,99998) ’'IFAIL = ', IFAIL
WRITE (NOUT, *)

END IF

IF (IFAIL.LE.1l) WRITE (NOUT,99999) NSTOR(I),

+ ! Points Answer = ', ANS

40

60

80

*

99999
99998

*

*

Page 6

CONTINUE
WRITE (NOUT, *)
WRITE (NOUT, *)
WRITE (NOUT,*) ’'Gauss—-Laguerre example’
DO 60 I =1, 3
IFAIL = 1
A = 2.0e0
B # 1.0e0

ANS = DO1BAF(D01BAX,A,B,NSTOR(I),FUN3,IFAIL)
IF (IFAIL.NE.O) THEN

WRITE (NOUT,99998) ’'IFAIL = ', IFAIL
WRITE (NOUT, *)

END IF
IF (IFAIL.LE.1l) WRITE (NOUT,99999) NSTOR(I),
+ ! Points Answer = ’/, ANS
CONTINUE
WRITE (NOUT, *)
WRITE (NOUT, *)
WRITE (NOUT,*) ’'Gauss—Hermite example’
DO 80 I =1, 3
A = -1.0e0
B = 3.0e0
IFAIL =1
ANS = DO1BAF(DO1BAW,A,B,NSTOR(I),FUN4, IFAIL)
IF (IFAIL.NE.O) THEN
WRITE (NOUT, 99998) ’'IFAIL = ’, IFAIL
WRITE (NOUT, *)
END IF ;
IF (IFAIL.LE.1l) WRITE (NOUT,99999) NSTOR(I),
+ ’* Points Answer = ', ANS
CONTINUE
STOP
FORMAT (1X,I5,A,F10.5)
FORMAT (1X,A,I2)

END

real FUNCTION FUN1(X)

.. Scalar Arguments ..

real X

.. Executable Statements ..
FUN1 = 4.0e0/(1.0e0+X*X)
RETURN

END

[NP2136/15)

D01 - Quadrature

real FUNCTION FUN2 (X)
* .. Scalar Arguments ..
real X
.. Intrinsic Functions
INTRINSIC LOG

* .. Executable Statements ..
FUN2 = 1.0e0/(X*X*LOG(X))

RETURN
END

real FUNCTION FUN3(X)

* .. Scalar Arguments ..
real X

* .. Intrinsic Functions
INTRINSIC EXP

FUN3 = EXP(-X)/X

RETURN
END

*
real FUNCTION FUN4(X)

* .. Scalar Arguments ..
real X

* .. Intrinsic Functions ..
INTRINSIC EXP

* .. Executable Statements ..
FUN4 = EXP(-3.0e0*X*X-4.0e0*X-1.0e0)
RETURN
END

9.2. Program Data
None.

9.3. Program Results

.. Executable Statements ..

DO1BAF Example Program Results

Gauss-Legendre example

4 Points Answer =
8 Points Answer =
16 Points Answer =

Gauss-Rational example

4 Points Answer =
8 Points Answer =
16 Points Answer =

Gauss-Laguerre example

4 Points Answer =
8 Points Answer =
16 Points Answer =

Gauss-Hermite example

4 Points Answer =
8 Points Answer =
16 Points Answer =

3.14161
3.14159
3.14159

0.37910
0.37876
0.37869

0.04887
0.04890
0.04890

1.42803
1.42817
1.42817

DO01BAF

[NP2136/15]

Page 7 (last)

DO1 — Quadrature DO01BBF

DO1BBF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

DO1BBF returns the weights and abscissae appropriate to a Gaussian quadrature formula with a
specified number of abscissae. The formulae provided are Gauss-Legendre, Gauss-Rational,
Gauss-Laguerre and Gauss-Hermite.

2. Specification
SUBROUTINE DO1BBF (DO1XXX, A, B, ITYPE, N, WEIGHT, ABSCIS, IFAIL)

INTEGER ITYPE, N, IFAIL
real A, B, WEIGHT(N), ABSCIS(N)
EXTERNAL DO1XXX

3. Description

This routine returns the weights and abscissae for use in the Gaussian quadrature of a function
f(x). The quadrature takes the form

S =3w fx;)
i=1
where w; are the weights and x; are the abscissae (see Davis and Rabinowitz [1], Froberg [2],

Ralston [3] or Stroud and Secrest [4]).

Weights and abscissae are available for Gauss-Legendre, Gauss-Rational, Gauss-Laguerre and
Gauss-Hermite quadrature, and for a selection of values of n (see Section 5).

(a) Gauss-Legendre Quadrature:

b

S:Jf(x)dx

a

where a and b are finite and it will be exact for any function of the form
2n-1

flx) = Y cx'
i=0
(b) Gauss-Rational quadrature:

S :J f(x) dx (a+b>0) or S :J- f(x) dx (a+b<0)

and will be exact for any function of the form
2n-1

2n+1 c. ; Conti-i (X+b)i
f&) = % (x4b)’ | (x4b) P

(c) Gauss-Laguerre quadrature, adjusted weights option:

S :J fix) dx (b>0) or S :J flx) dx (b<0)

a —o0

and will be exact for any function of the form

2~
fix) =e™ Zl cix'
=0

[NP1692114] Page 1

DO01BBF

D01 — Quadrature

(d) Gauss-Hermite quadrature, adjusted weights option:

400

S = J f(x) dx

and will be exact for any function of the form
2n-1

f(x) = e ¥ cx' (5>0)
i=0

(e) Gauss-Laguerre quadrature, normal weights option:

S = J e fix) dx (b>0) or S ::J e™ f(x) dax (b<0)
and will be exact for any function of the form
2n-1

fx) = Y cxl
i=0

—00

(f) Gauss-Hermite quadrature, normal weights option:

+o00
S =~ j et f(x) dx

and will be exact for any function of the form:

m-1
fx) = Z c;x'
=0

Note: that the Gauss-Legendre abscissae, with a = -1, b = +1, are the zeros of the Legendre
polynomials; the Gauss-Laguerre abscissae, with a = 0, b = 1, are the zeros of the Laguerre
polynomials; and the Gauss-Hermite abscissae, with @ = 0, b = 1, are the zeros of the Hermite
polynomials.

4. References

(1

(2]

(3]

[4]

DAVIS, P.J. and RABINOWITZ, P.

Numerical Integration.

Blaisdell Publishing Company, pp. 33-52, 1967.
FROBERG, C.E.

Introduction to Numerical Analysis.
Addison-Wesley, pp. 181-187, 1965.
RALSTON, A.

A First Course in Numerical Analysis.
McGraw-Hill, pp. 87-90, 1965.

STROUD, A.H. and SECREST, D.
Gaussian Quadrature Formulas.
Prentice-Hall, 1966.

S. Parameters
1: DO01XXX - SUBROUTINE, supplied by the NAG Fortran Library. External Procedure

Page 2

The name of the routine indicates the quadrature formula:
DO01BAZ, for Gauss-Legendre weights and abscissae;
DO1BAY, for Gauss-Rational weights and abscissae;
DO01BAX, for Gauss-Laguerre weights and abscissae;
D01BAW, for Gauss-Hermite weights and abscissae.

The name used must be declared as EXTERNAL in the (sub)program from which DOIBBF
is called.

[NP1692/14)

DOI - Quadrature DO01BBF

In certain implementations, to avoid name clashes between single and double precision
versions, names of auxiliary routines have been changed, e.g. DO1BAX to BAXDOI. Please
refer to the Users’ Note for your implementation.

22 A -—real Input
3: B -—real Input

On entry: the quantities @ and b as described in the appropriate subsection of Section 3.

4 ITYPE - INTEGER. Input

On entry: indicates the type of weights for Gauss-Laguerre or Gauss-Hermite quadrature
(see Section 3):

if ITYPE = 1, adjusted weights will be returned;
if ITYPE = 0, normal weights will be returned.
Constraint: ITYPE = O or 1.
For Gauss-Legendre or Gauss-Rational quadrature, this parameter is not used.

5: N — INTEGER. Input
On entry: the number of weights and abscissae to be returned, n.
Constraint: N = 1,2,3,4,5,6,8,10,12,14,16,20,24,32,48 or 64.

6: WEIGHT(N) — real array. Output

On exit: the N weights. For Gauss-Laguerre and Gauss-Hermite quadrature, these will be the
adjusted weights if ITYPE = 1, and the normal weights if ITYPE = 0.

7: ABSCIS(N) - real array. Output
On exit: the N abscissae.

8: IFAIL — INTEGER. Input/ Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
Errors detected by the routine:
IFAIL = 1

The N-point rule is not among those stored. If the soft fail option is used, the weights and
abscissae returned will be those for the largest valid value of N less than the requested
value, and the excess elements of WEIGHT and ABSCIS (i.e. up to the requested N) will
be filled with zeros.

IFAIL = 2
The value of A and/or B is invalid.

Gauss-Rational: A + B =0
Gauss-Laguerre: B = 0
Gauss-Hermite: B < 0

If the soft fail option is used the weights and abscissae are returned as zero.

[NP1692/14] Page 3

DO01BBF DO1 — Quadrature

9.1.

9.2.

Page 4

IFAIL = 3

Laguerre and Hermite normal weights only: underflow is occurring in evaluating one or
more of the normal weights. If the soft fail option is used, the underflowing weights are
returned as zero. A smaller value of N must be used; or adjusted weights should be used
(ITYPE = 1). In the latter case, take care that underflow does not occur when evaluating
the integrand appropriate for adjusted weights.

Accuracy
The weights and abscissae are stored for standard values of A and B to full machine accuracy.

Further Comments
Timing is negligible.

Example

This example program returns the abscissae and (adjusted) weights for the six-point
Gauss-Laguerre formula.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO1BBF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER N
PARAMETER (N=6)
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Local Scalars ..
real A, B
INTEGER IFAIL, ITYPE, J
* .. Local Arrays ..
real ABSCIS(N), WEIGHT(N)
* .. External Subroutines ..
EXTERNAL D01BAX, DO1BBF
* .. Executable Statements ..
WRITE (NOUT,*) ’‘DO1BBF Example Program Results’
A = 0.0e0
B = 1.0e0
ITYPE = 1
IFAIL = 0

CALL DO1BBF(DO1BAX,A,B,ITYPE,N,WEIGHT,ABSCIS, IFAIL)

WRITE (NOUT, *)
WRITE (NOUT,99998) ’Laguerre formula,’, N, ’ points’
WRITE (NOUT, *)
WRITE (NOUT,=*) ' Abscissae Weights’
WRITE (NOUT, *)
WRITE (NOUT,99999) (ABSCIS(J),WEIGHT(J),J=1,N)
STOP

*

99999 FORMAT (1X,2el15.6)

99998 FORMAT (1X,A,I3,A)
END

Program Data
None.

[NP1692114)

DO! - Quadrature

9.3. Program Results
DO1BBF Example Program Results

Laguerre formula,

Abscissae

0.222847E+00
0.118893E+01
0.299274E+01
0.577514E+01
0.983747E+01
0.159829E+02

OCQOO0OO0OO

6 points
Weights

.573536E+00
.136925E+01
.226068E+01
.335052E+01
.488683E+01
.784902E+01

D01BBF

[NP1692/14]

Page 5 (last)

D01 - Quadrature D01BCF

DO01BCF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

DO1BCF returns the weights (normal or adjusted) and abscissae for a Gaussian integration rule
with a specified number of abscissae. Six different types of Gauss rule are allowed.

2. Specification

SUBROUTINE DO1BCF (ITYPE, A, B, C, D, N, WEIGHT, ABSCIS, IFAIL)

INTEGER ITYPE, N, IFAIL
real A, B, C, D, WEIGHT(N), ABSCIS(N)

3. Description

This routine returns the weights w; and abscissae x; for use in the summation
n
S = zwi f(xl)
=1

which approximates a definite integral (see Davis and Rabinowitz [1], or Stroud and Secrest
[2]). The following types are provided:

(a) Gauss-Legendre:

b
S = j f(x)dx, exactfor f(x) = P,,_,(x).

a
Constraint: b > a.
(b) Gauss-Jacobi:

normal weights:
S = "’ (b-x)° (x—a)? f(x)dx, exactfor flx) = P, (x),
adjusted v:';ights:
S = "’ flx)dx, exactfor f(x) = (b—x)(x—-a)? P, (x).

v

a

Constraint: ¢ > -1,d > -1, b > a.
(c) Gauss-Exponential:

normal weights:

c

ath f(x)dx, exact for f(x) = Py, (x),

X——

o b
S = >

vYa

adjusted weights:

4

ath P, ,(x).

b
S = [fx)dx, exactfor flx) = |[x———

Ya

Constraint: ¢ > -1, b > a.

[NP2834117) Page 1

D01BCF

D01 - Quadrature

(d) Gauss-Laguerre:

normal weights:

oo

.s:j x—a|%e™ flx)dx (b>0),

:j lx—a|e™ flx)dx (b<0), exactfor f(x) =P, , (x),

adjusted weights:

S:J fdx (6>0),

Constraint

:J fle)dx (b<0), exactfor f(x) = |x—a|€¢™P, (x).

:c>-1,b #0.

(e) Gauss-Hermite:

normal weights:

S =

v

(lx—a|® e?9° f(x)dx, exactfor f(x) = P, ,(x),

—oo

adjusted weights:

S = [fx)dx, exactfor f(x) = |x—al® e?% 9" P, (x).

Constraint

—oo

e >-1,b > 0.

(f) Gauss-Rational:

normal weights:
lx—al
S = (x)dx (a+b>0),
J, Ix+b|? 4
. lx—al|®) N 1
i fx)dx (a+b<0), exactfor f(x) = PZ"“(x—er)’

adjusted weights:

oo

S:[fx)dx (a+b>0),

a

a

v

Constraint

N o x-al 1
fx)dx (a+b<0), exactfor f(x) = bl P""‘“(x+b)'

—oo

cc>-1,d>c+1l,a+b=z0.

In the above formulae, P,,_, (x) stands for any polynomial of degree 2n — 1 or less in x.

The method used to calculate the abscissae involves finding the eigenvalues of the appropriate
tridiagonal matrix (see Golub and Welsch [3]). The weights are then determined by the formula:

n-1 -1
w, = zﬁuﬁ}
J=0

where P (x) is the jth orthogonal polynomial with respect to the weight function over the

appropriate inte

Page 2

rval.

[NP2834117]

D01 - Quadrature D01BCF

The weights and abscissae produced by DO1BCF may be passed to DO1FBF, which will evaluate
the summations in one or more dimensions.

4. References

[1] DAVIS, PJ. and RABINOWITZ, P.
Methods of Numerical Integration.
Academic Press, pp. 73-105, 1975.

[2] STROUD, A.H. and SECREST, D.
Gaussian Quadrature Formulas.
Prentice-Hall, 1966.

[3] GOLUB, G.H. and WELSCH, J.H.
Calculation of Gauss Quadrature Rules.
Math. Comput, 23, pp. 221-230, 1969.

5. Parameters
1: ITYPE - INTEGER. Input
On entry: indicates the type of quadrature rule.

ITYPE Gauss-Legendre
Gauss-Jacobi
Gauss-Exponential
Gauss-Laguerre
Gauss-Hermite

Gauss-Rational

The above values give the normal weights; the adjusted weights are obtained if the value of
ITYPE above is negated.

Constraint: -5 < ITYPE < 5.

N Hh wh = O

22 A -real Input
33 B-real Input
4 C-real. Input
5. D - real Input
On entry: the parameters a, b, ¢ and d which occur in the quadrature formulae. C is not used
if ITYPE = 0; D is not used unless ITYPE = %1 or 5. For some rules C and D must not
be too large (See Section 6).
Constraints: if ITYYPE = 0,A < B
if ITYPE = t1, A <B,C>-1landD > -1
if ITYPE = 2, A < B,and C > -1
if ITYPE = £3,B # 0, and C > -1
if ITYPE = £4,B > 0,and C > -1
ifITYPE=i5,A+B¢0,C>—landD>C+ 1.
6: N - INTEGER. Input
On entry: the number of weights and abscissae to be returned, . If ITYPE = -2 or -4 and
C # 0.0, an odd value of N may raise problems — see Section 6, IFAIL = 6.
Constraint: N > 0.
7 WEIGHT(N) - real array. Output
Onexit: the N weights.
8: ABSCIS(N) - real array. Output

On exit: the N abscissae.

[NP2834117] Page 3

D01BCF D01 - Quadrature

9: IFAIL - INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
Errors detected by the routine:
IFAIL =1

The algorithm for computing eigenvalues of a tridiagonal matrix has failed to obtain
convergence. If the soft fail option is used, the values of the weights and abscissae on return
are indeterminate.

IFAIL = 2
On entry, N < 1,
or ITYPE < -5,
or ITYPE > 5.

If the soft fail option is used, weights and abscissae are returned as zero.

IFAIL = 3
A, B, C or D is not in the allowed range:

if ITYPE= 0, A=2B
if ITYPE = £1, A2 BorC < -10orD £ -1.00orC + D + 2.0 > GMAX
if ITYPE = £2, A 2 BorC < -1.0
if ITYPE = £3, B = 00orC £ -1.0 or C + 1.0 > GMAX
if ITYPE = 24, B < 0.0 or C < -1.0 or (C+1.0)/2.0 > GMAX
if TYPE = 5, A+ B=000orC <-100rD £C + 1.0

Here GMAX is the (machine-dependent) largest integer value such that I'(GMAX) can be
computed without overflow (see the Users’ Note for your implementation for S14AAF).

If the soft fail option is used, weights and abscissae are returned as zero.

IFAIL = 4

One or more of the weights are larger than RMAX, the largest floating-point number on this
machine. RMAX is given by the function X02ALF. If the soft fail option is used, the
overflowing weights are returned as RMAX. Possible solutions are to use a smaller value of
N; or, if using adjusted weights, to change to normal weights. '

IFAIL = 5

One or more of the weights are too small to be distinguished from zero on this machine. If
the soft fail option is used, the underflowing weights are returned as zero, which may be a
usable approximation. Possible solutions are to use a smaller value of N; or, if using normal
weights, to change to adjusted weights.

IFAIL = 6

Gauss-Exponential or Gauss-Hermite adjusted weights with N odd and C # 0.0.
Theoretically, in these cases:

for C > 0.0, the central adjusted weight is infinite, and the exact function f(x) is zero
at the central abscissa.

for C < 0.0, the central adjusted weight is zero, and the exact function f(x) is infinite
at the central abscissa.

In either case, the contribution of the central abscissa to the summation is indeterminate.

Page 4 [NP2834/17)

D01 - Quadrature D01BCF

9.1.

In practice, the central weight may not have overflowed or underflowed, if there is sufficient
rounding error in the value of the central abscissa.

If the soft fail option is used, the weights and abscissa returned may be usable; the user must
be particularly careful not to ‘round’ the central abscissa to its true value without
simultaneously ‘rounding’ the central weight to zero or ° as appropriate, or the summation
will suffer. It would be preferable to use normal weights, if possible.

Note: Remember that, when switching from normal weights to adjusted weights or vice
versa, redefinition of f(x) is involved.

Accuracy

The accuracy depends mainly on n, with increasing loss of accuracy for larger values of n.
Typically, one or two decimal digits may be lost from machine accuracy with n = 20, and three
or four decimal digits may be lost for n = 100.

Further Comments

The major portion of the time is taken up during the calculation of the eigenvalues of the
appropriate tridiagonal matrix, where the time is roughly proportional to n.

Example

This example program returns the abscissae and (adjusted) weights for the seven-point
Gauss-Laguerre formula.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO1BCF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER N
PARAMETER (N=7)
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Local Scalars ..
real A, B, C, D
INTEGER IFAIL, ITYPE, J
* .. Local Arrays ..
real ABSCIS(N), WEIGHT(N)
* .. External Subroutines ..
EXTERNAL DO1BCF
* .. Executable Statements ..
WRITE (NOUT,*) ’‘DO1BCF Example Program Results’
A = 0.0e0
B = 1.0e0
C = 0.0e0
D = 0.0e0
ITYPE = -3
IFAIL = 0

CALL DO1BCF(ITYPE,A,B,C,D,N,WEIGHT,ABSCIS, IFAIL)

WRITE (NOUT, *)

WRITE (NOUT,99999) ‘Laguerre formula,’, N, / points’
WRITE (NOUT, *)

WRITE (NOUT,*) “ Abscissae Weights”
WRITE (NOUT, *)

WRITE (NOUT,99998) (ABSCIS(J),WEIGHT(J),J=1,N)

STOP

99999 FORMAT (1X,A,I3,A)
99998 FORMAT (1X,e15.5,5X,e15.5)
END

[NP2834117] Page 5

DO01BCF

9.2. Program Data

None.

9.3. Program Results
DOTBCF Example Program Results

Laguerre formula,

Abscissae

.19304E+00
.10267E+01
.25679E+01
.49004E+01
.81822E+01
.12734E+02
0.19396E+02

[eNeNoNeoNole)

7 points
Weights

0.49648E+00
0.11776E+01
0.19182E+01
0.27718E+01
0.38412E+01
0.53807E+01
0.84054E+01

D01 - Quadrature

Page 6 (last)

(NP2834117)

DOI — Quadrature DO1BDF

DO01BDF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

2:

Purpose
DO1BDF calculates an approximation to the integral of a function over a finite interval [a,b]:

b
I= j f(x)dx.

a

It is non-adaptive and as such is recommended for the integration of ‘smooth’ functions. These
exclude integrands with singularities, derivative singularities or high peaks on [a,b], or which
oscillate too strongly on [a,b].

Specification
SUBROUTINE DO1BDF (F, A, B, EPSABS, EPSREL, RESULT, ABSERR)
real F, A, B, EPSABS, EPSREL, RESULT, ABSERR
EXTERNAL F

Description

DO1BDF is based on the QUADPACK routine QNG (Piessens et al. [2]). It is a non-adaptive
routine which uses as its basic rules, the Gauss 10-point and 21-point formulae. If the accuracy
criterion is not met, formulae using 43 and 87 points are used successively, stopping whenever
the accuracy criterion is satisfied.

This routine is designed for smooth integrands only.

References

[1] PATTERSON, T.N.L.
The Optimum Addition of Points to Quadrature Formulae.
Math. Comput., 22, pp. 847-856, 1968.

[2] PIESSENS, R., DE DONCKER, E., UBERHUBER, C. and KAHANER, D.
QUADPACK, A Subroutine Package for Automatic Integration.
Springer-Verlag, 1983.

Parameters

F — real FUNCTION, supplied by the user. External Procedure
F must return the value of the integrand f at a given point.
Its specification is:

real FUNCTION F(X)
real X

1: X -—real Input
On entry: the point at which the integrand f must be evaluated.

F must be declared as EXTERNAL in the (sub)program from which DO1BDF is called.
Parameters denoted as Input must not be changed by this procedure.

A —real. Input
On entry: the lower limit of integration, a.

[NP2136/15] Page 1

DO01BDF DO1 — Quadrature

3:

9.1.

Page 2

B - real. Input
On entry: the upper limit of integration, b. It is not necessary that a < b.

EPSABS - real. Input

On entry: the absolute accuracy required. If EPSABS is negative, the absolute value is used.
See Section 7.

EPSREL - real. Input

On entry: the relative accuracy required. If EPSREL is negative, the absolute value is used.
See Section 7.

RESULT - real. Output
On exit: the approximation to the integral /.

ABSERR - real. Output

On exit: an estimate of the modulus of the absolute error, which should be an upper bound
for |I-RESULT].

Error Indicators and Warnings
There are no specific errors detected by the routine. However, if ABSERR is greater than
max{EPSABS,EPSRELx|RESULT|}

this indicates that the routine has probably failed to achieve the requested accuracy within
87 function evaluations.

Accuracy

The routine attempts to compute an approximation, RESULT, such that:
|[-RESULT| < ¢tol,

where
tol = max{|EPSABS|,|[EPSREL|x|I|}

and EPSABS and EPSREL are user-specified absolute and relative error tolerances. There can be
no guarantee that this is achieved, and users are advised to subdivide the interval if they have any
doubts about the accuracy obtained. Note that ABSERR contains an estimated bound on
|[I-RESULT]|.

Further Comments
The time taken by the routine depends on the integrand and on the accuracy required.

Example
To compute

1
J x? sin(107x)dx.
0

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO1BDF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters .

INTEGER NOUT

PARAMETER (NOUT=6)

[NP2136/15]

D01 - Quadrature

99999
99998
99997
99996

[NP2136/15)

Scalars in Common

.o . e

DO01BDF

real PI

INTEGER KOUNT

.. Local Scalars ..

real A, ABSERR, B, EPSABS, EPSREL, RESULT
.. External Functions ..

real FST, XO0lAAF
EXTERNAL FST, XO0lAAF

.. External Subroutines ..
EXTERNAL DO1BDF

.. Intrinsic Functions ..
INTRINSIC ABS, MAX

.. Common blocks ..

COMMON /TELNUM/PI, KOUNT

Executable Statements
WRITE (NOUT, *)
PI = X01lAAF(0.0e0)
EPSABS = 0.0e0
EPSREL = 1.0e-04
A = 0.0e0

B = 1.0e0

KOUNT = 0

'DO1BDF Example Program Results’

CALL DO1BDF(FST,A,B,EPSABS, EPSREL, RESULT, ABSERR)

WRITE (NOUT, *)
WRITE (NOUT, 99999)
WRITE (NOUT, 99999)
WRITE (NOUT,99998)
+ EPSABS

WRITE (NOUT, 99998)
+ EPSREL

WRITE (NOUT, *)
WRITE (NOUT,99997)
+ RESULT

WRITE (NOUT, 99998)
+ ABSERR

WRITE (NOUT, 99996)
+ KOUNT

WRITE (NOUT, *)

'A
'B
' EPSABS

fEPSREL

’ RESULT

" ABSERR

’ KOUNT

lower limit of integration = ’, A
upper limit of integration = ‘', B
absolute accuracy requested = ',

relative accuracy requested = ’,

approximation to the integral = ’,
estimate to the absolute error =/,

number of function evaluations = ',

IF (KOUNT.GT.87 .OR. ABSERR.GT.MAX(EPSABS, EPSREL*ABS(RESULT)))

+ THEN

WRITE (NOUT, %)
+
END IF

STOP

FORMAT
FORMAT
FORMAT
FORMAT
END

(1X,A,F10.4)
(1X,A,€9.2)
(1X,A,F9.5)
(1X,A,I4)

real FUNCTION FST(X)
.. Scalar Arguments

real X

.. Scalars in Common ..

real PI

INTEGER KOUNT

.. Intrinsic Functions ..
INTRINSIC SIN

.. Common blocks ..

COMMON /TELNUM/PI,

Executable Statements
KOUNT = KOUNT + 1

FST = (X**2)*SIN(10.0e0*PI*X)
RETURN

END

’Warning — requested accuracy may not have been achieved’

KOUNT

Page 3

DO01BDF DOI — Quadrature

9.2. Program Data
None.

9.3. Program Results
DO1BDF Example Program Results

A - lower limit of integration = 0.0000
B - upper limit of integration = 1.0000
EPSABS - absolute accuracy requested = (0.00E+00

EPSREL - relative accuracy requested = 0.10E-03
RESULT - approximation to the integral = -0.03183
ABSERR - estimate to the absolute error = 0.13E-10
KOUNT - number of function evaluations = 43

Page 4 (last) [NP2136/15)

D01 — Quadrature DO1DAF

DO1DAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

DOIDAF attempts to evaluate a double integral to a specified absolute accuracy by repeated
applications of the method described by Patterson.

2. Specification
SUBROUTINE DO1DAF (YA, YB, PHI1, PHI2, F, ABSACC, ANS, NPTS, IFAIL)

INTEGER NPTS, IFAIL
real YA, YB, PHI1, PHI2, F, ABSACC, ANS
EXTERNAL PHI1, PHI2, F

3. Description
This routine attempts to evaluate a definite integral of the form

b a2 (y)
T

a ¢|()’)
where a and b are constants and ¢, (y) and ¢, (y) are functions of the variable y.
The integral is evaluated by expressing it as
()

b
I= J F(y)dy, where F(y) = I f(xy)dx.
a ,l(}’)

Both the outer integral / and the inner integrals F(y) are evaluated by the method, described by
Patterson [1] and [2], of the optimum addition of points to Gauss quadrature formulae.

This method uses a family of interlacing common point formulae. Beginning with the three-point
Gauss rule, formulae using 7, 15, 31, 63, 127 and finally 255 points are derived. Each new
formula contains all the pivots of the earlier formulae so that no function evaluations are wasted.
Each integral is evaluated by applying these formulae successively until two results are obtained
which differ by less than the specified absolute accuracy.

4. References

[1] PATTERSON, T.N.L.
The optimum addition of points to quadrature formulae.
Math. Comp., 22, pp. 847-856, 1968.
Errata, Math. Comp., 23, p. 892, 1969.

[2] PATTERSON, T.N.L.
On some Gauss and Lobatto based integration formulae.
Math. Comp., 22, pp. 877-881, 1968.

5. Parameters
1: YA —real Input
On entry: the lower limit of the integral, a.

22 YB - real. Input
On entry: the upper limit of the integral, b. It is not necessary that a < b.

[NP1692/14] Page 1

DO1DAF D01 - Quadrature

w

4:

6:

Page 2

PHI1 - real FUNCTION, supplied by the user. ' External Procedure
PHI1 must return the lower limit of the inner integral for a given value of y.
Its specification is:

real FUNCTION PHI1(Y)
real Y

I Y -real Input
On entry: the value of y for which the lower limit must be evaluated.

PHI1 must be declared as EXTERNAL in the (sub)program from which DO1DAF is called.
Parameters denoted as /nput must not be changed by this procedure.

PHI2 — real FUNCTION, supplied by the user. External Procedure
PHI2 must return the upper limit of the inner integral for a given value of y.
Its specification is:

real FUNCTION PHI2(Y)
real Y

I Y —real Input

On entry: the value of y for which the upper limit must be evaluated.

PHI2 must be declared as EXTERNAL in the (sub)program from which DO1DAF is called.
Parameters denoted as Input must not be changed by this procedure.

F — real FUNCTION, supplied by the user. External Procedure
F must return the value of the integrand f at a given point.
Its specification is:

real FUNCTION F(X, Y)

real X, Y

. X —real Input

22 Y —real Input
Onentry: the co-ordinates of the point (x,y) at which the integrand must be
evaluated.

F must be declared as EXTERNAL in the (sub)program from which DO1DAF is called.
Parameters denoted as Input must not be changed by this procedure.

ABSACC — real. Input
On entry: the absolute accuracy requested.

ANS - real. Output
On exit: the estimate of the integral.

NPTS — INTEGER. Output
On exit: the total number of function evaluations.

[NP1692/14)

D01 — Quadrature DO1DAF

9:

IFAIL — INTEGER. Input/ Output

On entry: IFAIL must be set to 0, =1 or 1. Users who are unfamiliar with this parameter
should refer to Chapter P01 for details.

Onexit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL # 0
on exit, users are recommended to set IFAIL to —1 before entry. It is then essential to test
the value of IFAIL on exit. To suppress the output of an error message when soft failure
occurs, set IFAIL to 1.

Error Indicators and Warnings
Errors or warnings specified by the routine:
IFAIL = 1

This indicates that 255 points have been used in the outer integral and convergence has not
been obtained. All the inner integrals have, however, converged. In this case ANS may still
contain an approximate estimate of the integral.

IFAIL = 10xN

This indicates that the outer integral has converged but N inner integrals have failed to
converge with the use of 255 points. In this case ANS may still contain an approximate
estimate of the integral, but its reliability will decrease as N increases.

IFAIL = 10xN + 1

This indicates that both the outer integral and N of the inner integrals have not converged.
ANS may still contain an approximate estimate of the integral, but its reliability will
decrease as N increases.

Accuracy

The absolute accuracy is specified by the variable ABSACC. If, on exit, IFAIL = 0 then the
result is most likely correct to this accuracy. Even if IFAIL is non-zero on exit, it is still possible
that the calculated result could differ from the true value by less than the given accuracy.

Further Comments

The time taken by the routine depends upon the complexity of the integrand and the accuracy
requested.

With Patterson’s method accidental convergence may occasionally occur, when two estimates of
an integral agree to within the requested accuracy, but both estimates differ considerably from
the true result. This could occur in either the outer integral or in one or more of the inner
integrals.

If it occurs in the outer integral then apparent convergence is likely to be obtained with
considerably fewer integrand evaluations than may be expected. If it occurs in an inner integral,
the incorrect value could make the function F(y) appear to be badly behaved, in which case a
very large number of pivots may be needed for the overall evaluation of the integral. Thus both
unexpectedly small and unexpectedly large numbers of integrand evaluations should be
considered as indicating possible trouble. If accidental convergence is suspected, the integral may
be recomputed, requesting better accuracy; if the new request is more stringent than the degree of
accidental agreement (which is of course unknown), improved results should be obtained. This
is only possible when the accidental agreement is not better than machine accuracy. It should be
noted that the routine requests the same accuracy for the inner integrals as for the outer integral.
In practice it has been found that in the vast majority of cases this has proved to be adequate for
the overall result of the double integral to be accurate to within the specified value.

The routine is not well-suited to non-smooth integrands, i.e. integrands having some kind of
analytic discontinuity (such as a discontinuous or infinite partial derivative of some low order)
in, on the boundary of, or near, the region of integration. Warning: such singularities may be

[NP1692/14] Page 3

DO1DAF DO1 — Quadrature

9.1.

Page 4

induced by incautiously presenting an apparently smooth interval over the positive quadrant of
the unit circle, R

I = | (x+y)dxdy.
'R
This may be presented to DO1DAF as

ol Vi-y? 1
I=|dy J (x+y)dx = J‘ (&(1—y2)+yvl—y2)dy

Yo 0 0

but here the outer integral has an induced square-root singularity stemming from the way the
region has been presented to DO1DAF. This situation should be avoided by re-casting the
problem. For the example given, the use of polar co-ordinates would avoid the difficulty:
1 L
2
I= J dr J‘ r?(cos v+sin v)dv.
0 0

Example

The following program evaluates the integral discussed in Section 8, presenting it to DO1DAF
first as

R
J‘ (x+y)dxdy

1 pf
J. r2 (cos v+sin v)dvdr.
0 Yy

Note the difference in the number of function evaluations.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO1DAF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Local Scalars
real ABSACC, ANS, YA, YB
INTEGER IFAIL, NPTS
* .. External Functions ..
real FA, FB, P1l, P2A, P2B
EXTERNAL FA, FB, P1l, P2A, P2B
* .. External Subroutines
EXTERNAL DO1DAF
* .. Executable Statements ..
WRITE (NOUT,*) ’'DO1DAF Example Program Results’
YA = 0.0e0
YB = 1.0e0

ABSACC = 1.0e-6

WRITE (NOUT, *)

WRITE (NOUT,*) ’'First formulation’
IFAIL = 1

[NP1692/14)

DO1 - Quadrature DO1DAF

CALL DO1DAF(YA,YB,P1,P2A,FA,ABSACC,ANS,NPTS, IFAIL)

WRITE (NOUT, 99999) ’Integral =’, ANS

WRITE (NOUT,99998) ’'Number of function evaluations =’, NPTS
IF (IFAIL.GT.0) WRITE (NOUT,99997) ’IFAIL = '/, IFAIL

WRITE (NOUT, *)

WRITE (NOUT,*) ’‘Second formulation’

IFAIL = 1

CALL DO1DAF (YA, YB,P1l,P2B,FB,ABSACC,ANS,NPTS, IFAIL)

WRITE (NOUT, 99999) ’Integral =’, ANS

WRITE (NOUT, 99998) /Number of function evaluations =’, NPTS
IF (IFAIL.GT.0) WRITE (NOUT,99997) ’IFAIL = ', IFAIL

STOP

99999 FORMAT (1X,A,F9.4)

99998 FORMAT (1X,A,I5)

99997 FORMAT (1X,A,I2)
END

real FUNCTION P1l(Y)
* .. Scalar Arguments
real Y
.. Executable Statements ..
Pl = 0.0e0
RETURN
END

real FUNCTION P2A(Y)

* .. Scalar Arguments ..
real Y

* .. Intrinsic Functions ..
INTRINSIC SQRT

* .. Executable Statements
P2A = SQRT(1.0e0-Y*Y) L
RETURN
END

real FUNCTION FA(X,Y)
* .. Scalar Arguments ..
real X, Y
.. Executable Statements
FA =X+ Y
RETURN
END

real FUNCTION P2B(Y)

.. Scalar Arguments ..

real Y

* .. External Functions ..
real X01AAF
EXTERNAL X01AAF

* .. Executable Statements ..
P2B = 0.5e0*xX01AAF (0.0e0)
RETURN
END

real FUNCTION FB(X,Y)
* .. Scalar Arguments ..
real X, Y
* .. Intrinsic Functions ..
INTRINSIC COS, SIN
* .. Executable Statements ..
FB = Y*Y*(COS(X)+SIN(X))
RETURN
END

[NP1692/14] Page 5

DO1DAF D01 — Quadrature

9.2. Program Data
None.

9.3. Program Results
DO1DAF Example Program Results

First formulation
Integral = 0.6667

Number of function evaluations = 189
Second formulation
Integral = 0.6667
Number of function evaluations = 89

Page 6 (last) [NP1692/14)

DO1 — Quadrature DO1EAF

DO1EAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

DO1EAF computes approximations to the integrals of a vector of similar functions, each defined
over the same multi-dimensional hyper-rectangular region. The routine uses an adaptive
subdivision strategy, and also computes absolute error estimates.

Specification
SUBROUTINE DO1lEAF (NDIM, A, B, MINCLS, MAXCLS, NFUN, FUNSUB, ABSREQ,
1 RELREQ, LENWRK, WRKSTR, FINEST, ABSEST, IFAIL)
INTEGER NDIM, MINCLS, MAXCLS, NFUN, LENWRK, IFAIL
real A(NDIM), B(NDIM), ABSREQ, RELREQ, WRKSTR(LENWRK),
1 FINEST (NFUN), ABSEST(NFUN)
EXTERNAL FUNSUB

Description

The subroutine uses a globally adaptive method based on the algorithm described by van Dooren
and de Ridder [1] and Genz and Malik [2]. It is implemented for integrals in the form:

by pb, b,
j j I Fidard) dXy ... dxydx,,

where f; = f,(x,.x,,...x,), fori = 1,2,..m.

Upon entry, unless MINCLS has been set to a value less than or equal to 0, the subroutine divides
the integration region into a number of subregions with randomly selected volumes. Inside each
subregion the integrals and their errors are estimated. The initial number of subregions is chosen
to be as large as possible without using more than MINCLS calls to FUNSUB. The results are
stored in a partially ordered list (a heap). The routine then proceeds in stages. At each stage the
subregion with the largest error (measured using the maximum norm) is halved along the
co-ordinate axis where the integrands have largest absolute fourth differences. The basic rule is
applied to each half of this subregion and the results are stored in the list. The results from the
two halves are used to update the global integral and error estimates (FINEST and ABSEST)
and the routine continues unless [ABSEST|| < max (ABSREQ,||[FINEST||XRELREQ) where the
norm ||.|| is the maximum norm, or further subdivision would use more than MAXCLS calls to
FUNSUB. If at some stage there is insufficient working storage to keep the results for the next
subdivision, the routine switches to a less efficient mode; only if this mode of operation breaks
down is insufficient storage reported.

References
[1] VAN DOOREN, P. and DE RIDDER, L.

An Adaptive Algorithm for Numerical Integration over an N-dimensional Cube.
J. Comput. Appl. Math., Vol. 2, pp. 207-217, 1976.

[2] GENZ, AC. and MALIK, A A.
An Adaptive Algorithm for Numerical Integration over an N-dimensional Rectangular
Region.
J. Comput. Appl. Math., Vol. 6, pp. 295-302, 1980.

[NP2136/15) Page 1

DO1EAF D01 - Quadrature

Parameters

NDIM - INTEGER. Input
On entry: the number of dimensions of the integrals, n.
Constraint: NDIM 2 1.

A(NDIM) - real array. Input
On entry: the lower limits of integration, a;, for i = 1,2,...,n.

B(NDIM) - real array. Input
On entry: the upper limits of integration, b,, for i = 1,2,...,n.

MINCLS - INTEGER. Input/ Output
On entry: MINCLS must be set:

either to the minimum number of FUNSUB calls to be allowed, in which case
MINCLS 2 0;

or to a negative value. In this case, the routine continues the calculation started in a
previous call with the same integrands and integration limits: no parameters other than
MINCLS, MAXCLS, ABSREQ, RELREQ or IFAIL must be changed between the
calls.

On exit: MINCLS gives the number of FUNSUB calls actually used by DO1EAF. For the
continuation case (MINCLS < 0 on entry) this is the number of new FUNSUB calls on the
current call to DO1EAF.

MAXCLS — INTEGER. Input

On entry. the maximum number of FUNSUB calls to be allowed. In the continuation case
this is the number of new FUNSUB calls to be allowed.

Constraints: MAXCLS 2 MINCLS
MAXCLS 2 r,
where r =2" + 2n2 + 2n + 1, ifn <11,
or r=1+ n(4n*-6n+14)/3, ifn 2 11.

NFUN - INTEGER. Input
On entry: the number of integrands, m.
Constraint: NFUN 2 1.

FUNSUB - SUBROUTINE, supplied by the user. External Procedure
FUNSUB must evaluate the integrands f; at a given point.
Its specification is:

SUBROUTINE FUNSUB(NDIM, Z, NFUN, F)
INTEGER NDIM, NFUN
real Z (NDIM), F(NFUN)

1: NDIM - INTEGER. Input
On entry: the number of dimensions of the integrals, n.

2: Z(NDIM) - real array. Input
On entry: the co-ordinates of the point at which the integrands must be evaluated.

3: NFUN - INTEGER. Input
On entry: the number of integrands, m.

Page 2 [NP2136115)

]

DOI - Quadrature DO1EAF

10:

11:

12:

13:

14:

4. F(NFUN) - real array. Output
On exit: the value of the ith integrand at the given point.

FUNSUB must be declared as EXTERNAL in the (sub)program from which DO1EAF is
called. Parameters denoted as Input must not be changed by this procedure.

ABSREQ - real. Input
On entry: the absolute accuracy required by the user.
Constraint: ABSREQ 2 0.0.

RELREQ - real. Input
On entry: the relative accuracy required by the user.
Constraint: RELREQ 2 0.0.

LENWRK - INTEGER. Input

On entry: the dimension of the array WRKSTR as declared in the (sub)program from which
DO1EAF is called.

Suggested value: LENWRK 2 6n + 9m + (n+m+2) (14p/r), where p is the value of
MAXCLS and r is defined under MAXCLS. If LENWRK is significantly smaller than this,
the routine will not work as efficiently and may even fail.

Constraint: LENWRK 2> 8xNDIM + 11xNFUN + 3.

WRKSTR(LENWRK) - real array. Input/ Output
Onentry: if MINCLS < 0, WRKSTR must be unchanged from the previous call of
DO1EAF.

On exit: WRKSTR contains information about the current subdivision which could be used
in a continuation call.

FINEST(NFUN) - real array. Output’

Onexit: FINEST(/) specifies the best estimate obtained from the ith integral, for
i=12..m.

ABSEST(NFUN) - real array. Output

Onexit: ABSEST(i) specifies the estimated absolute accuracy of FINEST(i), for
i =12.,m.

IFAIL - INTEGER. Input/Output

On entry: IFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter
should refer to Chapter P01 for details.

Onexit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if [FAIL # 0
on exit, users are recommended to set IFAIL to -1 before entry. It is then essential to test
the value of IFAIL on exit.

Error Indicators and Warnings
Errors or warnings specified by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1

MAXCLS was too small for DO1EAF to obtain the required accuracy. The arrays FINEST
and ABSEST respectively contain current estimates for the integrals and errors.

[NP2834117) Page 3

DO1EAF D01 — Quadrature

IFAIL = 2
LENWRK is too small for the routine to continue. The arrays FINEST and ABSEST
respectively contain current estimates for the integrals and errors.

IFAIL = 3

On a continuation call, MAXCLS was set too small to make any progress. Increase
MAXCLS before calling DO1EAF again.

IFAIL = 4
On entry, NDIM < 1,
or NFUN < 1,
or MAXCLS < MINCLS,
or MAXCLS < r (see MAXCLS),
or ABSREQ < 0.0,
or RELREQ < 0.0,
or LENWRK < 8xNDIM + 11xNFUN + 3.

7. Accuracy

An absolute error estimate for each integrand is output in the array ABSEST. The routine exits
with IFAIL = 0 if

max (ABSEST(/)) < max(ABSREQRELREQxmax |[FINEST(i)|).

8. Further Comments

Usually the running time for DO1EAF will be dominated by the time in the user-supplied
subroutine FUNSUB, so the maximum time that could be used by DO1EAF will be proportional
to MAXCLS multiplied by the cost of a call to FUNSUB.

On a normal call, the user should set MINCLS = 0 on entry.

For some integrands, particularly those that are poorly behaved in a small part of the integration
region, DO1EAF may terminate prematurely with values of ABSEST that are significantly
smaller than the actual absolute errors. This behaviour should be suspected if the returned value
of MINCLS is small relative to the expected difficulty of the integrals. When this occurs
DO1EAF should be called again, but with an entry value of MINCLS 2 2r, (see specification of
MAXCLS) and the results compared with those from the previous call.

If the routine is called with MINCLS 2 2r, the exact values of FINEST and ABSEST on return
will depend (within statistical limits) on the sequence of random numbers generated internally
within DOIEAF by calls to GO5CAF. Separate runs will produce identical answers unless the part
of the program executed prior to calling DO1EAF also calls (directly or indirectly) routines from
the GO5 chapter, and, in addition, the series of such calls differs between runs.

Because of moderate instability in the application of the basic integration rule, approximately the
last 1 + log,, (n*) decimal digits may be inaccurate when using DO1EAF for large values of n.

9. Example
To compute

1,1,1,1
J J J J 1Sz 10) X 4dx;dx,dx,,
0J0 Y0 Yo

where, for j = 1,2..,10 f; = In(x,+2¢,+3x;+4v,)sin(j+x,+2x,+3r;+4x,). The program is
intended to show how to exploit the continuation facility provided with DO1EAF: the routine
exits with IFAIL = 1 (printing an explanatory error message) and is re-entered with MAXCLS
reset to a larger value. The program can be used with any values of NDIM and NFUN, except
that the expression for IRCLS must be changed if NDIM > 10 (see specification of MAXCLS).

Page 4 [NP2834/17)

DOI — Quadrature DO1EAF

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO1lEAF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER NDIM, NFUN, IRCLS, MXCLS, LENWRK
PARAMETER (NDIM=4,NFUN=10,
+ IRCLS=2**NDIM+2*NDIM*NDIM+2*NDIM+1, MXCLS=IRCLS,
+ LENWRK=6*NDIM+9*NFUN+ (NDIM+NFUN+2)
+ *(1+MXCLS/IRCLS))
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Local Scalars ..
real ABSREQ, RELREQ
INTEGER I, IFAIL, MAXCLS, MINCLS, MULFAC, N
* .. Local Arrays ..
real A(NDIM), ABSEST(NFUN), B(NDIM), FINEST(NFUN),
+ WRKSTR(LENWRK)
* .. External Subroutines ..
EXTERNAL DO1EAF, FUNSUB
* .. Executable Statements ..

WRITE (NOUT,*) ’‘DOlEAF Example Program Results’
DO 20 N = 1, NDIM
A(N) = 0.0e0
B(N) = 1.0e0
20 CONTINUE

MINCLS = 0
MAXCLS = MXCLS
ABSREQ = 0.0e0

RELREQ = 1.0e-3
IF (NDIM.LE.10) THEN
MULFAC = 2**NDIM
ELSE
MULFAC = 2*NDIM**3
END IF
40 IFAIL = -1

CALL DOlEAF(NDIM,A, B,MINCLS, MAXCLS, NFUN, FUNSUB, ABSREQ, RELREQ,
+ LENWRK, WRKSTR, FINEST, ABSEST, IFAIL)

WRITE (NOUT, *)
IF (IFAIL.GT.O) THEN
IF (IFAIL.EQ.1 .OR. IFAIL.EQ.3) THEN
WRITE (NOUT,99999) ‘Results so far (’, MINCLS,

+ ’ FUNSUB calls in last call of DOlEAF)’
WRITE (NOUT, *)
WRITE (NOUT,*) ' I Integral Estimated error’

DO 60 I = 1, NFUN
WRITE (NOUT,99998) I, FINEST(I), ABSEST(I)
60 CONTINUE
WRITE (NOUT, *)
MINCLS = -1
MAXCLS = MAXCLS*MULFAC

GO TO 40
END IF
ELSE
WRITE (NOUT,99999) ‘Final results (’, MINCLS,
+ ’ FUNSUB calls in last call of DOlEAF)’
WRITE (NOUT, *)
WRITE (NOUT,*) * I Integral Estimated error’

DO 80 I = 1, NFUN
WRITE (NOUT,99998) I, FINEST(I), ABSEST(I)
80 CONTINUE
END IF
STOP

[NP2136/15] Page 5

DO1EAF D01 — Quadrature

99999 FORMAT (1X,A,I7,A)
99998 FORMAT (1X,I4,2F14.4)

END
*

SUBROUTINE FUNSUB(NDIM, Z, NFUN, F)
* .. Scalar Arguments .

INTEGER NDIM, NFUN
* .. Array Arguments ..

real F(NFUN), Z(NDIM)
* .. Local Scalars

real SUM

INTEGER I, N
* .. Intrinsic Functions

INTRINSIC LOG, real, SIN
* .. Executable Statements

SUM = 0.0e0
DO 20 N = 1, NDIM
SUM = SUM + real(N)*Z(N)
20 CONTINUE
DO 40 I = 1, NFUN
F(I) = LOG(SUM) *SIN(real(I)+SUM)
40 CONTINUE
RETURN
END

9.2. Program Data
None.

9.3. Program Results

DO1lEAF Example Program Results

** MAXCLS too small to obtain required accuracy

** ABNORMAL EXIT from NAG Library routine DOlEAF: IFAIL = 1
** NAG soft failure - control returned

Results so far (57 FUNSUB calls in last call of DO1lEAF)
I Integral Estimated error
1 0.0422 0.0086
2 0.3998 0.0038
3 0.3898 0.0127
4 0.0214 0.0099
5 ~-0.3666 0.0020
6 -0.4176 0.0120
7 -0.0846 0.0110
8 0.3261 0.0001
9 0.4371 0.0112

10 0.1461 0.0119

** MAXCLS too small to obtain required accuracy
*% ABNORMAL EXIT from NAG Library routine DOlEAF: IFAIL = 1
** NAG soft failure - control returned

Results so far (798 FUNSUB calls in last call of DOlEAF)
I Integral Estimated error
1 0.0384 0.0006
2 0.4012 0.0006
3 0.3952 0.0006
4 0.0258 0.0006
5 -0.3673 0.0006
6 -0.4227 0.0006
7 -0.0895 0.0006
8 0.3260 0.0006
9 0.4417 0.0006

10 0.1514 0.0006

Page 6 [NP2136/15]

D01 — Quadrature DO1EAF

Final results (912 FUNSUB calls in last call of DO1lEAF)
I Integral Estimated error
1 0.0384 0.0004
2 0.4012 0.0003
3 0.3952 0.0003
4 0.0258 0.0003
5 -0.3672 0.0003
6 -0.4227 0.0003
7 -0.0895 0.0003
8 0.3260 0.0003
9 0.4417 0.0003

10 0.1514 0.0003

[NP2136/15] Page 7 (last)

D01 - Quadrature DO01FBF

DO1FBF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your |mplementauon to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose
DO1FBF computes an estimate of a multi-dimensional integral (from 1 to 20 dimensions), given
the analytic form of the integrand and suitable Gaussian weights and abscissae.

2. Specification
real FUNCTION DO1FBF (NDIM, NPTVEC, LWA, WEIGHT, ABSCIS, FUN, IFAIL)

INTEGER NDIM, NPTVEC(NDIM), LWA, IFAIL
real WEIGHT (LWA), ABSCIS(LWA), FUN
EXTERNAL FUN

3. Description

This routine approximates a multi-dimensional integral by evaluating the summation
L

z wl.z, Z w2,l Z wn.i,, f(xl,i,’xliz'""xn.i,,)

ih=1 ip=1
given the welghts w;, and abscissae x;; for a multi-dimensional product integration rule (see
Davis and Rabmowntz [1]). The number of dimensions may be anything from 1 to 20.

The weights and abscissae for each dimension must have been placed in successive segments of
the arrays WEIGHT and ABSCIS; for example, by calling DO1BBF or DO1BCF once for each
dimension using a quadrature formula and number of abscissae appropriate to the range of each
X; and to the functional dependence of f on x;.

If normal weights are used, the summation will approximate the integral
J wy (xy) Juvz (x;) ... J w,(x,) flr x,..x,)dx, ... dx, dx,

where w; (x) is the weight function associated with the quadrature formula chosen for the jth
dimension; while if adjusted weights are used, the summation will approximate the integral

J J J/(xl,xz,...,x") dx, .. dx, dx,.

The user must supply a routine to evaluate
S, x5..x,)

at any values of X, X,,....x, within the range of integration.

4. References

[1] DAVIS, PJ., and RABINOWITZ, P.
Methods of Numerical Integration.
Academic Press, pp. 268-275, 1975.

5. Parameters
NDIM - INTEGER. Input
On entry: the number of dimensions of the integral, 7.
Constraint: 1 < NDIM < 20.

2: NPTVEC(NDIM) - INTEGER array. Input

Onentry: NPTVEC(j) must specify the number of points in the jth dimension of the
summation, forj = 1,2...,n.

[NP2834117] Page 1

DO1FBF D01 - Quadrature

&

@

LWA - INTEGER. Input

Onentry: the dimension of the arrays WEIGHT and ABSCIS as declared in the
(sub) program from which DO1FBF is called.

Constraint: LWA = NPTVEC(1) + NPTVEC(2) + .. + NPTVEC(NDIM).

WEIGHT (LWA) - real array. Input

On entry: WEIGHT must contain in succession the weights for the various dimensions, i.e.
WEIGHT (k) contains the ith weight for the jth dimension, with

k = NPTVEC(1) + NPTVEC(2) + .. + NPTVEC(j-1) + i.

ABSCIS(LWA) - real array. Input

On entry: ABSCIS must contain in succession the abscissae for the various dimensions, i.e.
ABSCIS (k) contains the ith abscissa for the jth dimension, with

k= NPTVEC(1) + NPTVEC(2) + ... + NPTVEC(j-1) + i.

FUN - real FUNCTION, supplied by the user. External Procedure
FUN must return the value of the integrand f at a given point.
Its specification is:

real FUNCTION FUN(NDIM, X)
INTEGER NDIM
real X (NDIM)

1: NDIM - INTEGER. Input
On entry: the number of dimensions of the integral, n.

2 X(NDIM) - real array. Input
On entry: the co-ordinates of the point at which the integrand must be evaluated.

FUN must be declared as EXTERNAL in the (sub)program from which DO1FBF is called.
Parameters denoted as Input must not be changed by this procedure.

IFAIL - INTEGER. Input! Output

Onentry: IFAIL must be set to 0, =1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

IFAIL =1

On entry, NDIM < 1,

or NDIM > 20,

or LWA < NPTVEC(1) + NPTVEC(2) + ... + NPTVEC(NDIM).
Accuracy

The accuracy of the computed multi-dimensional sum depends on the weights and the integrand
values at the abscissae. If these numbers vary significantly in size and sign then considerable
accuracy could be lost. If these numbers are all positive, then little accuracy will be lost in
computing the sum.

Page 2 (NP2834117)

DO1 - Quadrature DO1FBF

8. Further Comments
The total time taken by the routine will be proportional to
TXNPTVEC(1)XNPTVEC(2) X...xXNPTVEC (NDIM),
where T is the time taken for one evaluation of FUN.

9. Example
This example program evaluates the integral

o 0 oo 6
(x1%,%3) o2 e_o'5x§dX4dx:;dX2dxl
(x,42)8
1 —o¥] 4

using adjusted weights. The quadrature formulae chosen are:

x, : Gauss-Legendre, a = 1.0, b = 2.0,
X, : Gauss-Laguerre, a = 0.0, b = 2.0,
X3 : Gauss-Hermite, a = 0.0, b = 0.5,
x4 : Gauss-Rational, a = 1.0, b = 2.0.

Four points are sufficient in each dimension, as this integral in is in fact a product of four
one-dimensional integrals, for each of which the chosen four-point formula is exact.

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO1FBF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER NDIM, LWAMAX
PARAMETER (NDIM=4, LWAMAX=16)
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Local Scalars ..
real A, ANS, B
INTEGER I, IFAIL, ITYPE, IW, LWA
* .. Local Arrays ..
real ABSCIS(LWAMAX), WEIGHT (LWAMAX)
INTEGER NPTVEC(NDIM)
* .. External Functions ..
real DO1FBF, FUN
EXTERNAL DO1FBF, FUN
* .. External Subroutines ..
EXTERNAL DO1BaAW, D01BAX, D01BAY, D01BAZ, DO1BBF
* .. Data statements ..
DATA NPTVEC/4, 4, 4, 4/
* .. Executable Statements ..
WRITE (NOUT,*) ’‘DO1FBF Example Program Results’
LWA = 0

DO 20 I = 1, NDIM
LWA = LWA + NPTVEC(I)
20 CONTINUE
IF (LWAMAX.GE.LWA) THEN

ITYPE = 1
IW =1

A = 1.0e0
B = 2.0e0
IFAIL = 0

[NP1692/14] Page 3

DO1FBF DOI — Quadrature

CALL DOlBBF(DOlBAZ,A,B,ITYPE,NPTVEC(l),WEIGHT(IW),ABSCIS(IW),

+ IFAIL)
*
IW = IW + NPTVEC(1)
A = 0.0e0
B = 2.0e0
*
CALL DOlBBF(DOlBAX,A,B,ITYPE,NPTVEC(Z),WEIGHT(IW),ABSCIS(IW) ,
+ IFAIL)
*
IW = IW + NPTVEC(2)
A = 0.0e0
B = 0.5€0
*
CALL DOlBBF(DOlBAW,A,B,ITYPE,NPTVEC(3),WEIGHT(IW),ABSCIS(IW),
+ IFAIL)
*
IW = IW + NPTVEC(3)
A = 1.0e0
B = 2.0e0
*
CALL DOlBBF(DOlBAY,A,B,ITYPE,NPTVEC(4),WEIGHT(IW),ABSCIS(IW),
+ IFAIL)
*
IFAIL = 0

ANS = DOlFBF(NDIM,NPTVEC,LWA,WEIGHT,ABSCIS,FUN,IFAIL)

WRITE (NOUT, *)

WRITE (NOUT,99999) ’'Answer = ', ANS
END IF
STOP

99999 FORMAT (1X,A,F10.5)
END

real FUNCTION FUN(NDIM, X)

* .. Scalar Arguments ..
INTEGER NDIM
* .. Array Arguments ..
real X (NDIM)
* .. Intrinsic Functions
INTRINSIC EXP
* .. Executable Statements ..
FUN = (x(l)*x(2)*X(3))**6/(X(4)+2.0e0)**8*EXP(—2.0e0*X(2)
+ -0.5e0*X(3)*X(3))
RETURN
END

9.2. Program Data
None.

9.3. Program Results
DO1FBF Example Program Results

Answer = 0.25065

Page 4 (last) [NP1692/14]

DOI — Quadrature DO1FCF

DO1FCF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

L

Purpose

DO1FCF attempts to evaluate a multi-dimensional integral (up to 15 dimensions), with constant
and finite limits, to a specified relative accuracy, using an adaptive subdivision strategy.

Specification
SUBROUTINE DO1FCF (NDIM, A, B, MINPTS, MAXPTS, FUNCIN, EPS, ACC,
1 LENWRK, WRKSTR, FINVAL, IFAIL)
INTEGER NDIM, MINPTS, MAXPTS, LENWRK, IFAIL
real A(NDIM), B(NDIM), FUNCTN, EPS, ACC,
1 WRKSTR (LENWRK), FINVAL
EXTERNAL FUNCTN
Description

The routine returns an estimate of a multi-dimensional integral over a hyper-rectangle (i.e. with
constant limits), and also an estimate of the relative error. The user sets the relative accuracy
required, supplies the integrand as a function subprogram (FUNCTN), and also sets the
minimum and maximum acceptable number of calls to FUNCTN (in MINPTS and MAXPTS).

The routine operates by repeated subdivision of the hyper-rectangular region into smaller
hyper-rectangles. In each subregion, the integral is estimated using a seventh-degree rule, and an
error estimate is obtained by comparison with a fifth-degree rule which uses a subset of the same
points. The fourth differences of the integrand along each co-ordinate axis are evaluated, and the
subregion is marked for possible future subdivision in half along that co-ordinate axis which has
the largest absolute fourth difference.

If the estimated errors, totalled over the subregions, exceed the requested relative error (or if
fewer than MINPTS calls to FUNCTN have been made), further subdivision is necessary, and is
performed on the subregion with the largest estimated error, that subregion being halved along
the appropriate co-ordinate axis.

The routine will fail if the requested relative error level has not been attained by the time
MAXPTS calls to FUNCTN have been made; or, if the amount LENWRK of working storage is
insufficient. A formula for the recommended value of LENWRK is given in Section 5. If a
smaller value is used, and is exhausted in the course of execution, the routine switches to a less
efficient mode of operation; only if this mode also breaks down is insufficient storage reported.

DO1FCF is based on the HALF subroutine developed by van Dooren and de Ridder [1]. It uses
a different basic rule, described by Genz and Malik [2].

References

[1] VAN DOOREN, P. and DE RIDDER, L.
An Adaptive Algorithm for Numerical Integration over an N-dimensional Cube.
J. Comput. Appl. Math. 2, No. 3, pp. 207-217, 1976.

[2] GENZ, A.C. and MALIK, A.A.
An Adaptive Algorithm for Numerical Integration over an N-dimensional Rectangular
Region.
J. Comput. Appl. Math. 6, pp. 295-302, 1980.

[NP2136/15] Page 1

DO1FCF DOI — Quadrature

Parameters

NDIM - INTEGER. Input
On entry: the number of dimensions of the integral, n.
Constraint: 2 < NDIM < 15.

A(NDIM) - real array. Input
On entry: the lower limits of integration, a;, for i = 1,2,...,n.

B(NDIM) - real array. Input
On entry: the upper limits of integration, b, for i = 1,2,...,n.

MINPTS — INTEGER. Input/Output

On entry: MINPTS must be set to the minimum number of integrand evaluations to be
allowed.

On exit: MINPTS contains the actual number of integrand evaluations used by DO1FCF.

MAXPTS - INTEGER. Input
On entry: the maximum number of integrand evaluations to be allowed.

Constraints: MAXPTS = MINPTS
MAXPTS 2 a,
where o = 28PM 4 2%NDIM? + 2xNDIM + 1.

FUNCTN - real FUNCTION, supplied by the user. External Procedure
FUNCTN must return the value of the integrand f at a given point.
Its specification is:

real FUNCTION FUNCTN(NDIM, %)
INTEGER NDIM
real 7 (NDIM)

1: NDIM — INTEGER. Input
On entry: the number of dimensions of the integral, n.

2: Z(NDIM) - real array. Input
On entry: the co-ordinates of the point at which the integrand must be evaluated.

FUNCTN must be declared as EXTERNAL in the (sub)program from which DO1FCF is
called. Parameters denoted as Input must not be changed by this procedure.

EPS - real. Input

On entry: the relative error acceptable to the user. When the solution is zero or very small
relative accuracy may not be achievable but the user may still set EPS to a reasonable value
and check for the error exit IFAIL = 2.

Constraint: EPS > 0.0.

ACC — real. Output
On exit: the estimated relative error in FINVAL.

LENWRK - INTEGER. Input

On entry: the dimension of the array WRKSTR as declared in the (sub)program from which
DO1FCEF is called.

Suggested value: for maximum efficiency, LENWRK 2 (NDIM+2)x (1+MAXPTS/a.)
(see parameter MAXPTS for o).

Page 2 [NP2136/15)

D01

10:

11:

12:

— Quadrature DO1FCF
If LENWRK is less than this, the routine will usually run less efficiently and may fail.
Constraint: LENWRK 2 2xNDIM + 4.

WRKSTR (LENWRK) - real array. Workspace

FINVAL - real. Output
On exit: the best estimate obtained for the integral.

IFAIL — INTEGER. Input/ Output
On entry. IFAIL must be set to 0, —1 or 1. Users who are unfamiliar with this parameter
should refer to Chapter P01 for details.
Onexit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).
For this routine, because the values of output parameters may be useful even if IFAIL # 0
on exit, users are recommended to set IFAIL to —1 before entry. It is then essential to test
the value of IFAIL on exit. To suppress the output of an error message when soft failure
occurs, set IFAIL to 1.

Error Indicators and Warnings

Errors or warnings specified by the routine:

IFAIL =1
On entry, NDIM < 2,
or NDIM > 15,
or MAXPTS is too small,
or LENWRK < 2xNDIM + 4,
or EPS < 0.0.
IFAIL = 2

MAXPTS was too small to obtain the required relative accuracy EPS. On soft failure,
FINVAL and ACC contain estimates of the integral and the relative error, but ACC will be
greater than EPS.

IFAIL = 3

LENWRK was too small. On soft failure, FINVAL and ACC contain estimates of the
integral and the relative error, but ACC will be greater than EPS.

Accuracy
A relative error estimate is output through the parameter ACC.

Further Comments
Execution time will usually be dominated by the time taken to evaluate the integrand FUNCTN,

and hence the maximum time that could be taken will be proportional to MAXPTS.
Example

This example program estimates the integral

J’l"‘lj'lehlzfexp(hlz,)
090 o (142,42,)?

The accuracy requested is one part in 10,000.

dz,dz,dz,dz, = 0.575364

0

[NP2136/15] Page 3

DO1FCF

D01 — Quadrature

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

9.2.

Page 4

*
*
*,

20

DO1FCF Example Program Text
Mark 14 Revised. NAG Copyright 1989.
.. Parameters ..

INTEGER NDIM, MAXPTS, LENWRK

PARAMETER (NDIM;4,MAXPTS=1000*NDIM,LENWRKG(NDIM+2)
+ *(1+MAXPTS/(2**NDIM+2*NDIM*NDIM+2*NDIM+1)))
INTEGER NOUT

PARAMETER (NOUT=6)

.. Local Scalars ..

real ACC, EPS, FINVAL

INTEGER IFAIL, K, MINPTS

.. Local Arrays ..

real A(NDIM), B(NDIM), WRKSTR(LENWRK)

.. External Functions ..

real FUNCTN

EXTERNAL FUNCTN

.. External Subroutines ..

EXTERNAL DO1FCF

.. Executable Statements ..
WRITE (NOUT,*) ’DO1FCF Example Program Results’
DO 20 K= 1, NDIM
A(K) = 0.0e0
B(K) = 1.0e0
CONTINUE
EPS = 0.0001e0
MINPTS = 0
IFAIL = 1

CALL DO1FCF(NDIM, A, B,MINPTS,MAXPTS, FUNCTN, EPS, ACC, LENWRK, WRKSTR,
+ FINVAL, IFAIL)

WRITE (NOUT, *)
IF (IFAIL.NE.O) THEN
WRITE (NOUT,99999) ’‘IFAIL =’, IFAIL
WRITE (NOUT, *)
END IF
IF (IFAIL.EQ.0 .OR. IFAIL.GE.2) THEN
WRITE (NOUT,99998) ’‘Requested accuracy = ’, EPS

WRITE (NOUT,99997) ’Estimated value = / FINVAL
WRITE (NOUT,99998) ’Estimated accuracy = ', ACC
END IF
STOP
*
99999 FORMAT (1X,A,I5)
99998 FORMAT (1X,A,el2.2)
99997 FORMAT (1X,A,F12.4)
END
*
real FUNCTION FUNCTN(NDIM, Z)
* .. Scalar Arguments ..
INTEGER NDIM
* .. Array Arguments ..
real Z (NDIM)
* .. Intrinsic Functions ..
INTRINSIC EXP
* .. Executable Statements ..
.FUNCTN = 4.0e0%xZ(1)*Z(3)*2(3)*EXP(2.0e0*2(1)*Z(3))/(1.0e0+2(2)
+ +2(4))**x2
RETURN
END
Program Data
None.
[NP2136/15]

DO! — Quadrature DO1FCF

9.3. Program Results
DO1FCF Example Program Results

Requested accuracy = 0.10E-03

Estimated value - 0.5754

Estimated accuracy = 0.99E-04
[NP2136/15]

Page 5 (last)

DO! — Quadrature DO1FDF

DO1FDF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

DO1FDF calculates an approximation to a definite integral in up to 30 dimensions, using the
method of Sag and Szekeres. The region of integration is an n-sphere, or by built-in
transformation via the unit n-cube, any product region.

Specification
SUBROUTINE DO1FDF (NDIM, FUNCTN, SIGMA, REGION, LIMIT, RO, U, RESULT,
1 NCALLS, IFAIL)
INTEGER NDIM, LIMIT, NCALLS, IFAIL
real FUNCTN, SIGMA, RO, U, RESULT
EXTERNAL FUNCTN, REGION
Description
This subroutine calculates an approximation to
J f(xy,x5,..0x,) dx,dx,..dx, (1)
n-sphere
of radius o

or, more generally,

d, d,
J dx, J dx, f(x,,..x,) (2)

1 L]

where each ¢; and d; may be functions of x; (j<i).

The routine uses the method of Sag and Szekeres [1], which exploits a property of the shifted
p-point trapezoidal rule, namely, that it integrates exactly all polynomials of degree < p (Krylov
[2]). An attempt is made to induce periodicity in the integrand by making a parameterised
transformation to the unit n-sphere. The Jacobian of the transformation and all its direct
derivatives vanish rapidly towards the surface of the unit n-sphere, so that, except for functions
which have strong singularities on the boundary, the resulting integrand will be pseudo-periodic.
In addition, the variation in the integrand can be considerably reduced, causing the trapezoidal
rule to perform well.

Integrals of the form (1) are transformed to the unit n-sphere by the change of variables:

(4 ur

where r> = ¥ y? and u is an adjustable parameter.
i=1

Integrals of the form (2) are first of all transformed to the n-cube [-1,1]" by a linear change of
variables

and then to the unit sphere by a further change of variables
uz;
Yi = tanh(—)

1-r

n
where r* = Y z? and u is again an adjustable parameter.

=1

[NP2136/15] Page 1

DO1FDF DOI1 — Quadrature

The parameter u in these transformations determines how the transformed integrand is distributed
between the origin and the surface of the unit n-sphere. A typical value of u is 1.5. For larger u,
the integrand is concentrated toward the centre of the unit n-sphere, while for smaller u it is
concentrated toward the perimeter.

In performing the integration over the unit n-sphere by the trapezoidal rule, a displaced
equidistant grid of size h is constructed. The points of the mesh lie on concentric layers of radius

r, = 2*’n+8(i—1) fori = 1,2,3,....

The routine requires the user to specify an approximate maximum number of points to be used,
and then computes the largest number of whole layers to be used, subject to an upper limit of 400
layers.

In practice, the rapidly-decreasing Jacobian makes it unnecessary to include the whole unit
n-sphere and the integration region is limited by a user-specified cut-off radius r, < 1. The
grid-spacing h is determined by 7, and the number of layers to be used. A typical value of 7, is
0.8.

Some experimentation may be required with the choice of r, (which determines how much of
the unit n-sphere is included) and u (which determines how the transformed integrand is
distributed between the origin and surface of the unit n-sphere), to obtain best results for
particular families of integrals. This matter is discussed further in Section 8.

References

[1] SAG, T.W. and SZEKERES, G.
Numerical Evaluation of High-Dimensional Integrals.
Math. Comput. 18, pp. 245-253, 1964.

[2] KRYLOV, V.L
Approximate Calculation of Integrals (trans. A.H. Stroud).
Macmillan, 1962.

Parameters

NDIM - INTEGER. Input
On entry: the number of dimensions of the integral, n.
Constraint: 1 < NDIM < 30.

FUNCTN - real FUNCTION, supplied by the user. External Procedure
FUNCTN must return the value of the integrand f at a given point.
Its specification is:

real FUNCTION FUNCTN(NDIM, X)
INTEGER NDIM
real X(NDIM)

1: NDIM - INTEGER. Input
On entry: the number of dimensions of the integral, n.

2: X(NDIM) - real array. Input
On entry: the co-ordinates of the point at which the integrand must be evaluated.

FUNCTN must be declared as EXTERNAL in the (sub)program from which DO1FDF is
called. Parameters denoted as Input must not be changed by this procedure.

Page 2 [NP2136/15)

DO1 — Quadrature DO01FDF

3: SIGMA - real. Input
On entry: SIGMA indicates the region of integration:

if SIGMA 2 0.0, the integration is carried out over the n-sphere of radius SIGMA,
centred at the origin;

if SIGMA < 0.0, the integration is carried out over the product region described by
the user-specified subroutine REGION.

4: REGION — SUBROUTINE, supplied by the user. External Procedure
If SIGMA < 0.0, REGION must evaluate the limits of integration in any dimension.
Its specification is:

SUBROUTINE REGION(NDIM, X, J, C, D)
INTEGER NDIM, J

real X(NDIM), C, D
1: NDIM - INTEGER. Input
On entry: the number of dimensions of the integral, n.
2: X(NDIM) - real array. Input

Onentry: X(1),...,X(j—1) contain the current values of the first (j—1) variables,
which may be used if necessary in calculating c; and 4.

3: J - INTEGER. Input |
On entry: the index j for which the limits of the range of integration are required.

4 C-real Output
On exit: the lower limit c; of the range of x;.

5: D —real. Output

On exit: the upper limit d; of the range of x;.

If SIGMA 2 0.0, REGION is not called by DO1FDF, but a dummy routine must be
supplied (NAG Fortran Library auxiliary routine DO1IFDV may be used).

REGION must be declared as EXTERNAL in the (sub)program from which DO1FDF is
called. Parameters denoted as /nput must not be changed by this procedure.

s: LIMIT — INTEGER. Input
On entry: the approximate maximum number of integrand evaluations to be used.
Constraint: LIMIT 2 100.

6: RO — real. Input

On entry: the cutoff radius on the unit n-sphere, which may be regarded as an adjustable
parameter of the method.

Suggested value: a typical value is RO = 0.8. (See also Section 8.)
Constraint: 0.0 < R0 < 1.0.

7 U -—real. Input
On entry: U must specify an adjustable parameter of the transformation to the unit n-sphere.
Suggested value: a typical value is U = 1.5. (See also Section 8.)

Constraint: U > 0.0.

8: RESULT - real. Output
On exit: an estimate of the value of the integral.

[NP2136/15] Page 3

DO1FDF DOI - Quadrature

9:

10:

Page 4

NCALLS — INTEGER. Output
On exit: the actual number of integrand evaluations used. (See also Section 8.)

IFAIL — INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

IFAIL = 1
On entry, NDIM < 1
or NDIM > 30.
IFAIL = 2

On entry, LIMIT < 100.

IFAIL = 3
On entry, RO < 0.0
or RO = 1.0.
IFAIL = 4

On entry, U < 0.0.

Accuracy

No error estimate is returned, but results may be verified by repeating with an increased value of
LIMIT (provided that this causes an increase in the returned value of NCALLS).

Further Comments

The time taken by the routine will be approximately proportional to the returned value of
NCALLS, which, except in the circumstances outlined in (b) below, will be close to the given
value of LIMIT.

(a) Choice of RO and U

If the chosen combination of r, and u is too large in relation to the machine accuracy it is
possible that some of the points generated in the original region of integration may
transform into points in the unit n-sphere which lie too close to the boundary surface to be
distinguished from it to machine accuracy (despite the fact that r, < 1). To be specific, the
combination of r, and u is too large if

urg

2
-r

> 0.3465(¢+-1), if SIGMA 2 0.0,

or

1“’;’ > 0.3465(t—1), if SIGMA < 0.0,
—To

where ¢ is the number of bits in the mantissa of a real number.

The contribution of such points to the integral is neglected. This may be justified by appeal
to the fact that the Jacobian of the transformation rapidly approaches zero towards the
surface. Neglect of these points avoids the occurrence of overflow with integrands which are
infinite on the boundary.

[NP2136115)

DOI - Quadrature DO1FDF

(b) Values of LIMIT and NCALLS

LIMIT is an approximate upper limit to the number of integrand evaluations, and may not be
chosen less than 100. There are two circumstances when the returned value of NCALLS
(the actual number of evaluations used) may be significantly less than LIMIT.

Firstly, as explained in Section 8(a), an unsuitably large combination of RO and U may
result in some of the points being unusable. Such points are not included in the returned
value of NCALLS.

Secondly, no more than 400 layers will ever be used, no matter how high LIMIT is set. This
places an effective upper limit on NCALLS as follows:

n=1: 56

n=2: 1252

n=3: 23690

n=4: 394528

n=15: 5956906
9. Example

This example program calculates the integral

dx dx,dx s
——2—" = 22.2066
j J J o -r’

where s is the 3-sphere of radius o, r* = x} + x + x7 and ¢ = 1.5. Both sphere-to-sphere
and general product region transformations are used. For the former, we use r, = 0.9 and
u = 1.5; for the latter, r, = 0.8 and u = 1.5.

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO1FDF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Local Scalars ..
real RO, RESULT, SIGMA, U
INTEGER IFAIL, LIMIT, NCALLS, NDIM
* .. External Functions ..
real FUNCTN
EXTERNAL FUNCTN
* .. External Subroutines ..
EXTERNAL DO1FDF, DO1FDV, REGION
* .. Executable Statements ..
WRITE (NOUT,*) ’‘DO1FDF Example Program Results’
NDIM = 3
LIMIT = 8000
U = 1.5e0

WRITE (NOUT, *)

WRITE (NOUT,*) ’Sphere-to-sphere transformation’
SIGMA = 1.5e0

RO = 0.9e0

IFAIL = 0

CALL DO1FDF(NDIM, FUNCTN, SIGMA,DO1FDV,LIMIT,RO, U, RESULT, NCALLS,
+ IFAIL)

WRITE (NOUT, *)

WRITE (NOUT,99999) ’'Estimated value of the integral =’, RESULT
WRITE (NOUT,99998) ’‘Number of integrand evaluations =’, NCALLS

[NP2136/15) Page 5

DO1FDF

99999
99998

20

20

WRITE (NOUT, *)

WRITE (NOUT,*) ’Product region transformation’

SIGMA = -1.0e0
RO = 0.8e0
IFAIL = 0

DOI1 - Quadrature

CALL DO1FDF (NDIM, FUNCTN, SIGMA, REGION,LIMIT,RO, U, RESULT, NCALLS,

+ IFAIL)

WRITE (NOUT, *)

WRITE (NOUT,99999) ’Estimated value of the integral =',

RESULT

WRITE (NOUT,99998) ’/Number of integrand evaluations =’, NCALLS

STOP

FORMAT (1X,A,F9.3)
FORMAT (1X,A,I4)
END

real FUNCTION FUNCTN(NDIM, X)
.. Scalar Arguments ..

INTEGER NDIM

.. Array Arguments ..

real X (NDIM)

.. Local Scalars ..

INTEGER I

.. Intrinsic Functions ..
INTRINSIC ABS, SQRT

.. Executable Statements ..
FUNCTN = 2.25e0
DO 20 I = 1, NDIM

FUNCTN = FUNCTN - X(I)*X(I)
CONTINUE
FUNCTN = 1.0e0/SQRT(ABS(FUNCTN))
RETURN
END

SUBROUTINE REGION(NDIM,X,J,C,D)
.. Scalar Arguments ..
real C, D
INTEGER J, NDIM
.. Array Arguments ..
real X(NDIM)
.. Local Scalars ..
real SUM
INTEGER I, J1l
.. Intrinsic Functions ..
INTRINSIC ABS, SQRT
.. Executable Statements ..
C = -1.5e0
D = 1.5e0
IF (J.GT.l1l) THEN

SUM = 2.25e0

Jgdb =J -1

DO 20 I =1, J1

SUM = SUM - X(I)*X(I)

CONTINUE

D = SQRT(ABS(SUM))

C =-D
END IF
RETURN
END

9.2. Program Data

None.

Page 6

[NP2136/15)

DO1 — Quadrature DO1FDF

9.3. Program Results
DO1FDF Example Program Results

Sphere-to-sphere transformation

Estimated value of the integral = 22.168
Number of integrand evaluations =8026

Product region transformation

Estimated value of the integral = 22.137
Number of integrand evaluations =8026

[NP2136/15) Page 7 (last)

DOI — Quadrature DO1GAF

DO01GAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other impl tation-dependent details. The routine name may be precision-dependent.

1. Purpose

DO1GAF integrates a function which is specified numerically at four or more points, over the
whole of its specified range, using third-order finite-difference formulae with error estimates,
according to a method due to Gill and Miller.

2. Specification
SUBROUTINE DO1GAF (X, Y, N, ANS, ER, IFAIL)

INTEGER N, IFAIL
real X(N), Y(N), ANS, ER

3. Description
This routine evaluates the definite integral

1=j y(x) dx,

where the function y is specified at the n-points x,,x,,...,x,, which should be all distinct, and in
either ascending or descending order. The integral between successive points is calculated by a
four-point finite-difference formula centred on the interval concerned, except in the case of the
first and last intervals, where four-point forward and backward difference formulae respectively
are employed. If n is less than 4, the routine fails. An approximation to the truncation error is
integrated and added to the result. It is also returned separately to give an estimate of the
uncertainty in the result. The method is due to Gill and Miller.

4. References

[1] GILL, P.E. and MILLER, G.F.
An Algorithm for the Integration of Unequally Spaced Data.
Comput. J., 15, pp. 80-83, 1972.

5. Parameters

1: X(N) - real array. Inpur
On entry. the values of the independent variable, i.e. the x,,x,,...,x,,.
Constraint. either X(1) < X(2) < ... < X(N) or X(1) > X(2) > ... > X(N).

2: Y(N) — real array. Input
On entry. the values of the dependent variable y; at the points x;, for i = 1,2,...,n.

3: N - INTEGER. Input
On entry: the number of points, n.
Constraint: N 2 4.

4: ANS - real. Output
On exit: the estimate of the integral.

5: ER - real. Output
On exit: an estimate of the uncertainty in ANS.

[NP2136/15] Page 1

DO01GAF DOI1 - Quadrature

6: IFAIL — INTEGER. Input/Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
Errors detected by the routine:
IFAIL = 1
Indicates that fewer than four-points have been supplied to the routine.

IFAIL = 2
Values of X are neither strictly increasing nor strictly decreasing.

IFAIL = 3
Two points have the same X-value.

No error is reported arising from the relative magnitudes of ANS and ER on return, due to the
difficulty when the true answer is zero.

7. Accuracy

No accuracy level is specified by the user before calling the routine but on return ABS(ER) is an
approximation to, but not necessarily a bound for, |[-ANS|. If on exit IFAIL > 0, both ANS
and ER are returned as zero.

8. Further Comments
The time taken by the routine depends on the number of points supplied, n.

In their paper, Gill and Miller [1] do not add the quantity ER to ANS before return. However,
extensive tests have shown that a dramatic reduction in the error often results from such addition.
In other cases, it does not make an improvement, but these tend to be cases of low accuracy in
which the modified answer is not significantly inferior to the unmodified one. The user has the
option of recovering the Gill-Miller answer by subtracting ER from ANS on return from the
routine.

9. Example
The following example program evaluates the integral

1
J 42dx=7t
o1+x

reading in the function values at 21 unequally-spaced points.

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO1GAF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters
INTEGER NMAX
PARAMETER (NMAX=21)
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
* .. Local Scalars ..
real ANS, ERROR
INTEGER I, IFAIL, N

Page 2 [NP2136/15)

DOI — Quadrature DO01GAF

*

Local Arrays

real X(NMAX), Y(NMAX)
External Subroutines
EXTERNAL DO1GAF

Executable Statements
WRITE (NOUT,*) ’'DO1GAF Example Program Results’
Skip heading in data file
READ (NIN, *)
READ (NIN,*) N
WRITE (NOUT, %)
IF (N.LE.NMAX) THEN
READ (NIN,*) (X(I),¥(I),I=1,N)
IFAIL = 1

CALL DO1GAF(X,Y,N,ANS,ERROR, IFAIL)

IF (IFAIL.EQ.O) THEN
WRITE (NOUT,99999) ’'Integral = ’, ANS,

+ ’ Estimated error = ’, ERROR

ELSE IF (IFAIL.EQ.1l) THEN
WRITE (NOUT,*) ‘Less than 4 points supplied’
ELSE IF (IFAIL.EQ.2) THEN
WRITE (NOUT, *)
+ ‘Points not in increasing or decreasing order’
ELSE IF (IFAIL.EQ.3) THEN
WRITE (NOUT,*) ‘Points not all distinct’
END IF
ELSE
WRITE (NOUT,*) ‘More than NMAX data points’
END IF
STOP

99999 FORMAT (1X,A,F7.4,A,F7.4)

END

9.2. Program Data
DO1GAF Example Program Data

21

HOOOOOOOOOOOODOOOOOOO0OO

.00 4.0000
.04 3.9936
.08 3.9746
.12 3.9432
.22 3.8153
.26 3.7467
.30 3.6697
.38 3.4943
.39 3.4719
.42 3.4002
.45 3.3264
.46 3.3014
.60 2.9412
.68 2.7352
.72 2.6344
.73 2.6094
.83 2.3684
.85 2.3222
.88 2.2543
.90 2.2099
.00 2.0000

9.3. Program Results
DO1GAF Example Program Results

Integral = 3.1414 Estimated error = -0.0001

[NP2136/15]

Page 3 (last)

DOI — Quadrature D01GBF

DO01GBF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

ll

Purpose

DO1GBEF returns an approximation to the integral of a function over a hyper-rectangular region,
using a Monte-Carlo method. An approximate relative error estimate is also returned. This
routine is suitable for low accuracy work.

Specification
SUBROUTINE DO1GBF (NDIM, A, B, MINCLS, MAXCLS, FUNCTN, EPS,
1 ACC, LENWRK, WRKSTR, FINEST, IFAIL)
INTEGER NDIM, MINCLS, MAXCLS, LENWRK, IFAIL
real A(NDIM), B(NDIM), FUNCTN, EPS, ACC,
1 WRKSTR (LENWRK), FINEST
EXTERNAL FUNCTN

Description

DO1GBF uses an adaptive Monte-Carlo method based on the algorithm described by Lautrup [1].
It is implemented for integrals of the form:

bl bz bu
J J J f(x.x,5,00x,) dx, .. dx, dx,.

a, Ya, a,
Upon entry, unless LENWRK has been set to the minimum value 10xNDIM, the routine
subdivides the integration region into a number of equal volume subregions. Inside each
subregion the integral and the variance are estimated by means of pseudo-random sampling. All
contributions are added together to produce an estimate for the whole integral and total variance.
The variance along each co-ordinate axis is determined and the routine uses this information to
increase the density and change the widths of the subintervals along each axis, so as to reduce the
total variance. The total number of subregions is then increased by a factor of two and the
program recycles for another iteration. The program stops when a desired accuracy has been
reached or too many integral evaluations are needed for the next cycle.

References

[1] LAUTRUP, B.
An Adaptive Multi-dimensional Integration Procedure.
Proc. 2nd Coll. on Advanced Methods in Theoretical Physics.
Marseille, 1971.
[]
Parameters

NDIM — INTEGER. Input
On entry: the number of dimensions of the integral, n.
Constraint. NDIM 2 1.

A(NDIM) - real array. Input
On entry: the lower limits of integration, a;, for i = 1,2,...,n.

B(NDIM) - real array. Input
On entry: the upper limits of integration, b,, for i = 1,2,...,n.

[NP1692/14] Page 1

DO01GBF DOI - Quadrature

4: MINCLS - INTEGER. Input/ Output
On entry: MINCLS must be set:

either to the minimum number of integrand evaluations to be allowed, in which case
MINCLS = 0;

or to a negative value. In this case the routine assumes that a previous call had been made
with the same parameters NDIM, A and B and with either the same integrand (in which
case DO1GBF continues calculation) or a similar integrand (in which case DO1GBF begins
the calculation with the subdivision used in the last iteration of the previous call). See also
WRKSTR.

On exit: MINCLS contains the number of integrand evaluations actually used by DO1GBF.

5: MAXCLS - INTEGER. Input

On entry: the maximum number of integrand evaluations to be allowed. In the continuation
case this is the number of new integrand evaluations to be allowed. These counts do not
include zero integrand values.

Constraints: MAXCLS > MINCLS,
MAXCLS 2 4x(NDIM+1).

6: FUNCTN - real FUNCTION, supplied by the user. External Procedure
FUNCTN must return the value of the integrand f at a given point.
Its specification is:

real FUNCTION FUNCTN(NDIM, X)
INTEGER NDIM
real X (NDIM)

1: NDIM - INTEGER. Input
On entry: the number of dimensions of the integral, n.

2: X(NDIM) - real array. Input
On entry: the co-ordinates of the point at which the integrand must be evaluated.

FUNCTN must be declared as EXTERNAL in the (sub)program from which DO1GBF is
called. Parameters denoted as Input must not be changed by this procedure.

7: EPS — real. Input
On entry: the relative accuracy required.
Constraint: EPS 2 0.0.

8: ACC —real. s Output
On exit: the estimated relative accuracy of FINEST.

9: LENWRK - INTEGER. Input

On entry: the dimension of the array WRKSTR as declared in the (sub)program from which
DO01GBF is called.

For maximum efficiency, LENWRK should be about
3XNDIMx (MAXCLS/4) V"PM 1 7xNDIM.

If LENWRK is given the value 10xNDIM then the subroutine uses only one iteration of a
crude Monte-Carlo method with MAXCLS sample points.

Constraint: LENWRK 2 10xNDIM.

Page 2 (NP1692/14)

DO1 — Quadrature DO01GBF

10: WRKSTR(LENWRK) - real array. Input/ Output

Onentry: if MINCLS < 0.0, WRKSTR must be unchanged from the previous call of
DO1GBF — except that for a new integrand WRKSTR(LENWRK) must be set to 0.0. See
MINCLS.

On exit: WRKSTR contains information about the current subinterval structure which could
be used in later calls of DOIGBF. In particular, WRKSTR(j) gives the number of
subintervals used along the jth co-ordinate axis.

11: FINEST - real. Output
On exit: the best estimate obtained for the integral.

12: IFAIL - INTEGER. Input/ Output

On entry: IFAIL must be set to 0, —1 or 1. Users who are unfamiliar with this parameter
should refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL # 0
on exit, users are recommended to set IFAIL to -1 before entry. It is then essential to test
the value of IFAIL on exit. To suppress the output of an error message when soft failure
occurs, set IFAIL to 1.

6. Error Indicators and Warnings
Errors or warnings specified by the routine:

IFAIL =1
On entry, NDIM < 1,
or MINCLS = MAXCLS,
or LENWRK < 10xNDIM,
or MAXCLS < 4x(NDIM+1),
or EPS < 0.0.
IFAIL = 2

MAXCLS was too small for DO1GBF to obtain the required relative accuracy EPS. In this
case DO1GBF returns a value of FINEST with estimated relative error ACC, but ACC will
be greater than EPS. This error exit may be taken before MAXCLS non-zero integrand
evaluations have actually occurred, if the routine calculates that the current estimates could
not be improved before MAXCLS was exceeded.

7. Accuracy
A relative error estimate is output through the parameter ACC. The confidence factor is set so

that the actual error should be less than ACC 90% of the time. If a user desires a higher
confidence level then a smaller value of EPS should be used.

8. Further Comments

The running time for DO1GBF will usually be dominated by the time used to evaluate the
integrand FUNCTN, so the maximum time that could be used is approximately proportional to
MAXCLS.

For some integrands, particularly those that are poorly behaved in a small part of the integration
region, DO1GBF may terminate with a value of ACC which is significantly smaller than the
actual relative error. This should be suspected if the returned value of MINCLS is small relative
to the expected difficulty of the integral. Where this occurs, DO1GBF should be called again, but
with a higher entry value of MINCLS (e.g. twice the returned value) and the results compared
with those from the previous call.

The exact values of FINEST and ACC on return will depend (within statistical limits) on the
sequence of random numbers generated within DO1GBF by calls to GO5CAF. Separate runs will

[NP1692/14] Page 3

D01GBF

9.1.

Page 4

DO! — Quadrature

produce identical answers unless the part of the program executed prior to calling DO1GBF also
calls (directly or indirectly) routines from the GO5 chapter, and the series of such calls differs
between runs. If desired, the user may ensure the identity or difference between runs of the
results returned by DO1GBEF, by calling GOSCBF or GOSCCF respectively, immediately before

calling DO1GBF.

Example
This example program calculates the integral

1alalpl 2
4x x3exp(2x
J J j J X3 OPNE) 4 drydesdr, = 0.575364.
0v0 Yo Yo (14x,+x,)

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this

manual, the results produced may not be identical for all implementations.

* DO1GBF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER NDIM, MAXCLS, LENWRK
PARAMETER (NDIM=4,MAXCLS=20000, LENWRK=500)
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Local Scalars ..
real ACC, EPS, FINEST
INTEGER IFAIL, K, MINCLS
* .. Local Arrays ..
real A(NDIM), B(NDIM), WRKSTR(LENWRK)
* .. External Functions ..
real FUNCTN
EXTERNAL FUNCTN
* .. External Subroutines
EXTERNAL DO1GBF
* .. Executable Statements ..
WRITE (NOUT,*) ’'DO1GBF Example Program Results’
DO 20 K = 1, NDIM
A(K) = 0.0e0
B(K) = 1.0e0

20 CONTINUE
EPS = 0.01e0
MINCLS = 1000
IFAIL = 1

CALL DO1GBF (NDIM, A, B,MINCLS,MAXCLS, FUNCTN, EPS, ACC, LENWRK, WRKSTR,

+ FINEST, IFAIL)

WRITE (NOUT, *)
IF (IFAIL.GT.O0) THEN

WRITE (NOUT,99999) 'DO1GBF fails. IFAIL =',

WRITE (NOUT, *)

END IF

IF (IFAIL.EQ.0 .OR. IFAIL.EQ.2) THEN
WRITE (NOUT, 99998) ’'Requested accuracy
WRITE (NOUT, 99997) ’Estimated value
WRITE (NOUT,99998) ’'Estimated accuracy

WRITE (NOUT, 99999) ’‘Number of evaluations

END IF
STOP

99999 FORMAT (1X,A,I5)

99998 FORMAT (1X,A,el3.2)

99997 FORMAT (1X,A,F13.5)
END

[
. N NN

S N NN

IFAIL

EPS
FINEST
ACC
MINCLS

[NP1692/14)

DO1 — Quadrature D01GBF

real FUNCTION FUNCTN(NDIM,X)

* .. Scalar Arguments ..
INTEGER NDIM
* .. Array Arguments ..
real X(NDIM)
* .. Intrinsic Functions ..
INTRINSIC EXP
* .. Executable Statements ..
FUNCTN = 4.0e0*X(1)*X(3)**2*EXP(2.0e0*X(1)*X(3))/(1.0e0+X(2)+X(4))
+ **x2
RETURN
END

9.2. Program Data
None.

9.3. Program Results
DO1GBF Example Program Results

Requested accuracy = 0.10E-01
Estimated value = 0.57554
Estimated accuracy = 0.82E-02
Number of evaluations = 1728

[NP1692/14) Page 5 (last)

DOI — Quadrature DO01GCF

DO01GCF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

DO1GCF calculates an approximation to a definite integral in up to 20 dimensions, using the
Korobov-Conroy number theoretic method.

2. Specification
SUBROUTINE DO1GCF (NDIM, FUNCTN, REGION, NPTS, VK, NRAND, ITRANS,

1 . RES, ERR, IFAIL)

INTEGER NDIM, NPTS, NRAND, ITRANS, IFAIL
real FUNCTN, VK(NDIM), RES, ERR
EXTERNAL FUNCTN, REGION

3. Description
This routine calculates an approximation to the integral,

d, d,
I= j dxl,...,j dx, f(x,,%5,...,X,) 1)

using the Korobov-Conroy number theoretic method ([1], [2], [3]). The region of integration
defined in (1) is such that generally c; and d; may be functions of x,,x,,....x;_;, fori = 2,3,...,n,
with ¢, and d, constants. The integral is first of all transformed to an integral over the n-cube
[0,1]" by the change of variables

X, =¢; + (d,-'-C,-)yi7 i= l,2,...,n.

The method then uses as its basis the number theoretic formula for the n-cube, [0,1]":

1 1
dx, .. ax, g(x,xy,..,.x,) = = k— ¢,y k— - E 2
I ' L n 81 Ey) pég({p 2 2)

0

where {x} denotes the fractional part of x, a,.a,,...,a, are the so-called optimal coefficients, E is
the error and p is a prime integer. (It is strictly only necessary that p be relatively prime to all
a,,a,,..,a, and is in fact chosen to be even for some cases in Conroy [3].) The method makes
use of properties of the Fourier expansion of g(x,,x,,....x,) which is assumed to have some
degree of periodicity. Depending on the choice of a,,a,,....a, the contributions from certain
groups of Fourier coefficients are eliminated from the error, E. Korobov shows that a, ,a,,....a,
can be chosen so that the error satisfies

E < CK p®n*p 3)

where o and C are real numbers depending on the convergence rate of the Fourier series, fis a
constant depending on »n and K is a constant depending on o and n. There are a number of
procedures for calculating these optimal coefficients. Korobov imposes the constraint that

a, =1

a;, = a"' (modp) 4)
and gives a procedure for calculating the parameter, a, to satisfy the optimal conditions.
In this routine the periodisation is achieved by the simple transformation

x; = y2(3-2y)), i=12..n.

More sophisticated periodisation procedures are available but in practice the degree of
periodisation does not appear to be a critical requirement of the method.

An easily calculable error estimate is not available apart from repetition with an increasing
sequence of values of p which can yield erratic results. The difficulties have been studied by

[NP2136/15) Page 1

D01GCF D01 — Quadrature

Cranley and Patterson [4] who have proposed a Monte Carlo error estimate arising from
converting (2) into a stochastic integration rule by the inclusion of a random origin shift which

leaves the form of the error (3) unchanged; i.e. in the formula (2), {k%} is replaced by

a.
a+k— }, for i = 1,2,...,n, where each ¢;, is uniformly distributed over [0,1]. Computing the
integral for each of a sequence of random vectors o allows a ‘standard error’ to be estimated.

This routine provides built-in sets of optimal coefficients, corresponding to six different values of
p. Alternatively the optimal coefficients may be supplied by the user. Routines DO1GYF and
DO1GZF compute the optimal coefficients for the cases where p is a prime number or p is a
product of 2 primes, respectively.

4. References

[1] KOROBOV, N.M.
The Approximate Calculation of Multiple Integrals Using Number Theoretic Methods.
Dokl. Acad. Nauk. SSSR, 115, pp. 1062-1065, 1957.

[2] KOROBOV, N.M.
Number Theoretic Methods in Approximate Analysis.
Fizmatgiz, Moscow, 1963.

[3] CONROY, H.
Molecular Schroedinger Equation VIII. A New Method for Evaluating Multidimensional
Integrals.
J. Chem. Phys., 47, pp. 5307-5318, 1967.

[4] CRANLEY, R. and PATTERSON, T.N.L.
Randomisation of Number Theoretic Methods for Multiple Integration.
SIAM J. Numer. Anal., 13, pp. 904-914, 1976.

S. Parameters

1: NDIM - INTEGER. Input
On entry: the number of dimensions of the integral, n.
Constraint: 1 < NDIM < 20.

2: FUNCTN - real FUNCTION, supplied by the user. External Procedure
FUNCTN must return the value of the integrand f at a given point.
Its specification is:

real FUNCTION FUNCTN (NDIM, X)
INTEGER NDIM
real X (NDIM)

1: NDIM - INTEGER. Input
On entry: the number of dimensions of the integral, n.

2: X(NDIM) - real array. Input
On entry: the co-ordinates of the point at which the integrand must be evaluated.

FUNCTN must be declared as EXTERNAL in the (sub)program from which DO1GCF is
called. Parameters denoted as Input must not be changed by this procedure.

Page 2 [NP2136/15)

D01 — Quadrature DO01GCF

3: REGION - SUBROUTINE, supplied by the user. External Procedure
REGION must evaluate the limits of integration in any dimension.
Its specification is:

SUBROUTINE REGION(NDIM, X, J, C, D)

INTEGER NDIM, J
real X(NDIM), C, D
1: NDIM - INTEGER. Input
On entry: the number of dimensions of the integral, n.
2: X(NDIM) - real array. Input

Onentry: X(1),...,X(j—1) contain the current values of the first j—1 variables,
which may be used if necessary in calculating ¢ ;and d;.

3: J — INTEGER. Input
On entry: the index j for which the limits of the range of integration are required.

4 C-—real Output
On exit: the lower limit c; of the range of x;.

5: D —real. Output

On exit: the upper limit d; of the range of x;.

REGION must be declared as EXTERNAL in the (sub)program from which DO1GCF is
called. Parameters denoted as /nput must not be changed by this procedure.

4: NPTS - INTEGER. Input
On entry: the Korobov rule to be used. There are two alternatives depending on the value of
NPTS.

(a) 1 £ NPTS < 6.
In this case one of six preset rules is chosen using 2129, 5003, 10007, 20011, 40009 or
80021 points depending on the respective value of NPTS being 1, 2, 3, 4, 5 or 6.

(b) NPTS > 6.
NPTS is the number of actual points to be used with corresponding optimal coefficients
supplied in the array VK.

Constraint: NPTS 2 1.

5: VK(NDIM) - real array. Input/ Output

Onentry: if NPTS > 6, VK must contain the » optimal coefficients (which may be
calculated using DO1GYF or DO1GZF); if NPTS < 6, VK need not be set.

Onexit: if NPTS > 6, VK is unchanged; if NPTS < 6, VK contains the n optimal
coefficients used by the preset rule.

6: NRAND - INTEGER. Input

On entry: the number of random samples to be generated in the error estimation (generally
a small value, say 3 to 5 is sufficient). The total number of integrand evaluations will be
NRANDXNPTS.

Constraint: NRAND 2 1.

7 ITRANS — INTEGER. Input
On entry: indicates whether the periodising transformation is to be used:
if ITRANS = 0, the transformation is to be used.

[NP1692/14) p Page 3

DO01GCF DO1 - Quadrature

10:

if ITRANS # 0, the transformation is to be suppresssed (to cover cases where the
integrand may already be periodic or where the user desires to specify a particular
transformation in the definition of FUNCTN).

Suggested value: ITRANS = 0.

RES - real. Output
On exit: an estimate of the value of the integral.

ERR - real. Output

On exit: the standard error as computed from NRAND sample values. If NRAND = 1, then
ERR contains zero.

IFAIL — INTEGER. Input/ Output

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

IFAIL =1
On entry, NDIM < 1,
or NDIM > 20.
IFAIL = 2

On entry, NPTS < 1.

IFAIL = 3
On entry, NRAND < 1.

Accuracy
An estimate of the absolute standard error is given by the value, on exit, of ERR.

Further Comments

The time taken by the routine will be approximately proportional to NRANDXp, where p is the
number of points used.

The exact values of RES and ERR returned by DO1GCF will depend (within statistical limits) on
the sequence of random numbers generated within the routine by calls to GOSCAF. To ensure
that the results returned by DO1GCF in separate runs are identical, users should call GOSCBF
immediately before calling DO1GCF; to ensure that they are different, call GOSCCF.

Example
This example calculates the integral

1plal,l
J j J J c0s(0.54+2(x,; +x,+x5+x,)—4) dx,dx,dx,dx,.
0v Yo Y0

Page 4 [NP1692/14]

DO1 — Quadrature DO01GCF

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read

the Users’

Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this

manual, the results produced may not be identical for all implementations.

*
*
*

20

[NP1692/14]

DO1GCF Example Program Text
Mark 14 Revised. NAG Copyright 1989.

.. Parameters ..
INTEGER NDIM
PARAMETER (NDIM=4)
INTEGER NOUT
PARAMETER (NOUT=6)
.. Local Scalars ..
real ERR, RES
INTEGER IFAIL, ITRANS, NPTS, NRAND
.. Local Arrays ..
real VK(NDIM)
.. External Functions ..
real FUNCT
EXTERNAL FUNCT
External Subroutines ..
EXTERNAL DO1GCF, REGION

.. Executable Statements ..

WRITE (NOUT,*) ’'DO1GCF Example Program Results’
NPTS = 2

ITRANS = 0

NRAND
IFAIL

4

0

CALL DO1GCF(NDIM, FUNCT, REGION, NPTS, VK, NRAND, ITRANS, RES, ERR, IFAIL)
WRITE (NOUT, *)

WRITE (NOUT,99999) 'Result =’, RES, ’ Standard error =’, ERR
STOP

FORMAT (1X,A,F13.5,3,el10.2)
END

SUBROUTINE REGION(N,X,J,A,B)
.. Scalar Arguments

real A, B
INTEGER J, N

.. Array Arguments ..

real X(N)

.. Executable Statements ..
A = 0.0e0

B = 1.0e0

RETURN

END

real FUNCTION FUNCT(NDIM,X)
.. Scalar Arguments ..

INTEGER NDIM
Array Arguments

real X(NDIM)

.. Local Scalars ..

real SUM

INTEGER J

.. Intrinsic Functions ..

INTRINSIC COS, real

.. Executable Statements ..
SUM = 0.0e0
DO 20 J = 1, NDIM
SUM = SUM + X(J)
CONTINUE
FUNCT = COS(0.5e0+2.0e0*SUM-real(NDIM))
RETURN
END

Page 5

DO01GCF DOI — Quadrature

9.2. Program Data
None.

9.3. Program Results
DO1GCF Example Program Results

Result = 0.43999 sStandard error = 0.18E-05

Page 6 (last) [NP1692/14]

D01 — Quadrature D01GDF

DO01GDF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

DO1GDF calculates an approximation to a definite integral in up to 20 dimensions, using the
Korobov-Conroy number theoretic method. This routine is designed to be particularly efficient
on vector processors.

2. Specification
SUBROUTINE DO1GDF (NDIM, VECFUN, VECREG, NPTS, VK, NRAND, ITRANS,

1 RES, ERR, IFAIL)
INTEGER NDIM, NPTS, NRAND, ITRANS, IFAIL
real VK(NDIM), RES, ERR
EXTERNAL VECFUN, VECREG

3. Description
This routine calculates an approximation to the integral,

d, d,
I= J J‘ Ffxyx,) dx, .. dx, (1)

using the Korobov-Conroy number theoretic method ([1], [2], [3]). The region of integration
defined in (1) is such that generally c; and d; may be functions of x, x,,....x; ;, fori = 2,3,...,n,
with ¢, and d, constants. The integral is first of all transformed to an integral over the n—cube
[0,1]" by the change of variables

x; =c¢; + (d;=c,)y;, i=12..n

The method then uses as its basis the number theoretic formula for the n—cube, [0,1]":

1 1
12 a a,

I T A e = I 2

J Jo 8(x,) 1 PZ{g p) (2)

0

where {x} denotes the fractional part of x, a,,...,.a, are the so-called optimal coefficients, E is the
error and p is a prime integer. (It is strictly only necessary that p be relatively prime to all
a,,...a, and is in fact chosen to be even for some cases in Conroy, [3].) The method makes use
of properties of the Fourier expansion of g(x,,....x,) which is assumed to have some degree of
periodicity. Depending on the choice of a,,...,.a, the contributions from certain groups of Fourier
coefficients are eliminated from the error, E. Korobov shows that a,,...,a, can be chosen so that
the error satisfies

E < CK p“*In%p (3)

where o and C are real numbers depending on the convergence rate of the Fourier series, fis a
constant depending on »n and K is a constant depending on & and n. There are a number of
procedures for calculating these optimal coefficients. Korobov imposes the constraint that

a, =1

a; = a" (modp) (4)
and gives a procedure for calculating the parameter, a, to satisfy the optimal conditions.
In this routine the periodisation is achieved by the simple transformation

x; = y}(3-2y,), i=12..n.

More sophisticated periodisation procedures are available but in practice the degree of
periodisation does not appear to be a critical requirement of the method.

[NP1692/14] Page 1

DO01GDF DO0! — Quadrature

Page 2

An easily calculable error estimate is not available apart from repetition with an increasing
sequence of values of p which can yield erratic results. The difficulties have been studied by
Cranley and Patterson [4] who have proposed a Monte-Carlo error estimate arising from
converting (2) into a stochastic integration rule by the inclusion of a random origin shift which

leaves the form of the error (3) unchanged; i.e. in the formula (2), {k%} is replaced by

a.:
{a,-+k;‘ } for i = 1,2,...,n, where each ¢, is uniformly distributed over [0,1]. Computing the
integral for each of a sequence of random vectors « allows a ‘standard error’ to be estimated.

This routine provides built-in sets of optimal coefficients, corresponding to six different values of
p. Alternatively, the optimal coefficients may be supplied by the user. DO1IGYF and DO1GZF
compute the optimal coefficients for the cases where p is a prime number or p is a product of two
primes, respectively.

This routine is designed to be particularly efficient on vector processors, although it is very
important that the user also codes the subroutines VECFUN and VECREG efficiently.

References

[1] KOROBOV, N.M.
The Approximate Calculation of Multiple Integrals Using Number Theoretic Methods.
Dokl. Acad. Nauk. SSSR, 115, pp. 1062-1065, 1957.

[2] KOROBOV, N.M.
Number Theoretic Methods in Approximate Analysis.
Fizmatgiz, Moscow, 1963.

[3] CONROY, H.
Molecular Schroedinger Equation VIII. A new method for evaluating multidimensional
integrals.
J. Chem. Phys., 47, pp. 5307-5318, 1967.

[4] CRANLEY, R. and PATTERSON, T.N.L.
Randomisation of number theoretic methods for multiple integration.
SIAM J. Numer. Anal., 13, pp. 904-914, 1976.

Parameters

NDIM - INTEGER. Input
On entry: the number of dimensions of the integral, n.
Constraint: 1 < NDIM < 20.

VECFUN - SUBROUTINE, supplied by the user. External Procedure
VECFUN must evaluate the integrand at a specified set of points.
Its specification is:

SUBROUTINE VECFUN (NDIM, X, FV, M)

INTEGER NDIM, M
real X(M,NDIM), FV{M)
1: NDIM - INTEGER. Input
On entry: the number of dimensions of the integral, n.
2: X(M,NDIM) — real array. Input

Onentry: the co-ordinates of the m points at which the integrand must be
evaluated. X (i,j) contains the jth co-ordinate of the ith point.

3: FV(M) — real array. Output

Onexit: FV(i) must contain the value of the integrand of the ith point. i.e.
FV(i) = f(X(i,1),X(i,2),...X(iNDIM)), for i = 1,2,..M.

[NP1692/14]

D01 — Quadrature DO01GDF

3:

4:

5:

[NP1692/14]

4: M - INTEGER. Input
On entry: the number of points m at which the integrand is to be evaluated.

VECFUN must be declared as EXTERNAL in the (sub)program from which DO1GDF is
called. Parameters denoted as Input must not be changed by this procedure.

VECREG - SUBROUTINE, supplied by the user. External Procedure

VECREG must evaluate the limits of integration in any dimension for a set of points.
Its specification is:

SUBROUTINE VECREG (NDIM, X, J, C, D, M)
INTEGER NDIM, J, M

real X(M,NDIM), C(M), D(M)
1: NDIM - INTEGER. Input
On entry: the number of dimensions of the integral, n.
2: X(M,NDIM) - real array. Input

Onentry: fori = 1,2,...m,X(i,1), X(i,2), ... , X(i,j—1) contain the current values
of the first j—1 co-ordinates of the ith point, which may be used if necessary in
calculating the m values of ¢; and d;.

3: J — INTEGER. Input

Onentry: the index, j, of the dimension for which the limits of the range of
integration are required.

4: C(M) - real array. Output
Onexit: C(i) must be set to the lower limit of the range for X(ij), for
i=12,...,m

5: D(M) - real array. Output
Onexit: D(i) must be set to the upper limit of the range for X(i,j), for
i=12,..m.

6: M - INTEGER. Input
On entry: the number of points m at which the limits of integration must be
specified.

VECREG must be declared as EXTERNAL in the (sub)program from which DO1GDF is
called. Parameters denoted as /nput must not be changed by this procedure.

NPTS — INTEGER. Input

On entry: the Korobov rule to be used. There are two alternatives depending on the value of
NPTS.
(a) 1 < NPTS 6.

In this case one of six preset rules is chosen using 2129, 5003, 10007, 20011, 40009
or 80021 points depending on the respective value of NPTS being 1, 2, 3, 4, 5 or 6.

(b) NPTS > 6.
NPTS is the number of actual points to be used with corresponding optimal
coefficients supplied in the array VK.

Constraint. NPTS 2 1

VK (NDIM) - real array. Input/ Output

Onentry: f NPTS > 6, VK must contain the n optimal coefficients (which may be
calculated using DO1GYF or DO1GZF); if NPTS < 6, VK need not be set.

Onexit: if NPTS > 6, VK is unchanged; if NPTS < 6, VK contains the n optimal
coefficients used by the preset rule.

Page 3

D01GDF D01 — Quadrature

6:

10:

NRAND - INTEGER. Input

On entry: the number of random samples to be generated (generally a small value, say 3 to
5, is sufficient). The estimate, RES, of the value of the integral returned by the routine is
then the average of NRAND calculations with different random origin shifts. If NPTS > 6,
the total number of integrand evaluations will be NRANDXNPTS. If 1 < NPTS < 6, then
the number of integrand evaluations will be NRANDXp, where p is the number of points
corresponding to the six preset rules. For reasons of efficiency, these values are calculated
a number at a time in VECFUN.

Constraint: NRAND 2 1

ITRANS - INTEGER. Input
On entry: indicates whether the periodising transformation is to be used:
if ITRANS = 0, the transformation is to be used.

if ITRANS # 0, the transformation is to be suppressed (to cover cases where the
integrand may already be periodic or where the user desires to specify a particular
transformation in the definition of VECFUN).

Suggested value: ITRANS = 0.

RES - real. Output
On exit: an estimate of the value of the integral.

ERR - real. Output

On exit: the standard error as computed from NRAND sample values. If NRAND = 1, then
ERR contains zero.

IFAIL — INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1
On entry, NDIM < 1,
or NDIM > 20.
IFAIL = 2

On entry, NPTS < 1.

IFAIL = 3
On entry, NRAND < 1.

Accuracy
If NRAND > 1, an estimate of the absolute standard error is given by the value, on exit, of ERR.

Further Comments

This routine performs the same computation as the DO1GCF. However, the interface has been
modified so that it can perform more efficiently on machines with vector processing capabilities.
In particular, the routines VECFUN and VECREG must calculate the integrand and limits of
integration at a set of points. For some problems the amount of time spent in these two

Page 4 [NP1692/14)

D01 — Quadrature

DO01GDF

subroutines, which must be supplied by the user, may account for a significant part of the total
computation time. For this reason it is vital that the user considers the possibilities for
vectorization in the code supplied for these two subroutines.

The time taken will be approximately proportional to NRANDXxp, where p is the number of

points used, but may depend significantly on the efficiency of the code provided by the user in
subroutines VECFUN and VECREG.

The exact values of RES and ERR returned by DO1GDF will depend (within statistical limits)
on the sequence of random numbers generated within the routine by calls to GOSCAF. To ensure
that the results returned by DO1GDF in separate runs are identical, users should call GOSCBF

immediately before calling DO1GDF; to ensure that they are different, call GOSCCF.

9. Example

This example calculates the integral

0 Yo Yo ‘o

9.1. Program Text

1 1 1 1

Note: the listing of the example program presented below uscs bold italicised terms to denot isi
the Users’ Note for your implementation to check the interpretation of these terms. As explamed in the Essenual Imroducuon to this
manual, the results produced may not be identical for all implementations.

* DO1GDF Example Program Text
* Mark 14 Release. NAG Copyright 1989.
* .. Parameters
INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER NDIM
PARAMETER (NDIM=4)
* .. Local Scalars ..
real ERR, RES
INTEGER IFAIL, ITRANS, NPTS, NRAND
* .. Local Arrays
real VK(NDIM)
* .. External Subroutines
EXTERNAL DO1GDF, VECFUN, VECREG
* .. Executable Statements

WRITE (NOUT,*) ’‘DO01GDF Example Program Results’

WRITE (NOUT, *)
NPTS = 2
ITRANS = 0
NRAND = 4
IFAIL = 0

ils. Please read

CALL DO1GDF(NDIM,VECFUN,VECREG,NPTS, VK, NRAND, ITRANS, RES, ERR, IFAIL)

WRITE (NOUT,99999) ’‘Result = ’, RES, ’, standard error = ',

STOP

real FV(M), X(M,NDIM)
* .. Local Scalars

INTEGER I, J
* Intrinsic Functions

INTRINSIC COS, real

[NP1692/14)

FORMAT (1X,A,F13.5,A,€10.2)
END

SUBROUTINE VECFUN(NDIM, X, FV,6M)
.. Scalar Arguments ..
INTEGER M, NDIM

. Array Arguments

ERR

Page 5

DO01GDF

.. Executable Statements ..
DO 201 =1, M
FV(I) = 0.0e0
20 CONTINUE
DO 60 J = 1, NDIM
DO 40 I =1, M
FV(I) = FV(I) + X(I,J)
40 CONTINUE
60 CONTINUE
DO 80 I =1, M
FV(I) = COS(0.5€0+2.0e0*FV(I)-real(NDIM))
80 CONTINUE

RETURN

END
*

SUBROUTINE VECREG(NDIM,X,J,C,D,M)
* .. Scalar Arguments ..

INTEGER J, M, NDIM
* .. Array Arguments ..

real C(M), D(M), X(M,NDIM)
* .. Local Scalars ..

INTEGER I
* .. Executable Statements ..

DO20I =1, M
C(I) = 0.0e0
D(I) = 1.0e0
20 CONTINUE
RETURN
END

9.2. Program Data
None.

9.3. Program Results
DO1GDF Example Program Results

Result = 0.43999, standard error = 0.18E-05

D01 — Quadrature

Page 6 (last)

[NP1692/14]

D01 — Quadrature DO1GYF

DO1GYF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check i interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

DO1GYF calculates the optimal coefficients, for use by DOIGCF and DO1GDF for prime
numbers of points.

2. Specification
SUBROUTINE DO1GYF (NDIM, NPTS, VK, IFAIL)

INTEGER NDIM, NPTS, IFAIL
real VK (NDIM)

3. Description
The Korobov procedure [1] for calculating the optimal coefficients a,,a,,....a, for p-point
integration over the n-cube [0,1]" imposes the constraint

a =1
a; = a"™' (modp), i=12,.,n (1)

where p is a prime number and ¢ is an adjustable parameter. This parameter is computed to
minimize the error in the integral

1 1
3”] dx, .. j ax, [T (1-2x,)?, (2)
0 0 i=1

when computed using the number theoretic rule, and the resulting coefficients can be shown to fit
the Korobov definition of optimality.

The computation for large values of p is extremely time consuming (the number of elementary
operations varying as p*) and there is a practical upper limit to the number of points that can be
used. Routine DO1GZF is computationally more economical in this respect but the associated
error is likely to be larger.

4. References

[1] KOROBOV, N.M.
Number Theoretic Methods in Approximate Analysis.
Fizmatgiz, Moscow, 1963.

S. Parameters

1: NDIM - INTEGER. Input
On entry: the number of dimensions of the integral, n.
Constraint: NDIM 2 1.

2: NPTS - INTEGER. Input
On entry: the number of points to be used, p.
Constraint: NPTS must be a prime number 2 5.

3: VK(NDIM) - real array. Output
On exit: the n optimal coefficients.

[NP1692/14) Page 1

DO1GYF D01 — Quadrature

9.1.

Page 2

IFAIL — INTEGER. Input! Output

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:
IFAIL = 1

On entry, NDIM < 1.

IFAIL = 2
On entry, NPTS < 5.

IFAIL = 3
On entry, NPTS is not a prime number.

IFAIL = 4
The precision of the machine is insufficient to perform the computation exactly. Try a
smaller value of NPTS, or use an implementation of higher precision.

Accuracy

The optimal coefficients are returned as exact integers (though stored in a real array).

Further Comments
The time taken is approximately proportional to p? (see Section 3).

Example

This example program calculates the Korobov optimal coefficients where the number of
dimensions is 4 and the number of points is 631.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO1GYF Example Program Text
* Mark 14 HRevised. NAG Copyright 1989.
* .. Parameters
INTEGER NDIM
PARAMETEF (NDIM=4)
INTEGER NOUT
PARAMETEF. (NOUT=6)
* .. Local Scalars ..
INTEGER I, IFAIL, NPTS
* .. Local Arrays ..
real VK(20)
* .. External Subroutines
EXTERNAL DO1GYF
* .. Executable Statements ..
WRITE (NQUT,*) ’'DO1GYF Example Program Results’
NPTS = 631

WRITE (NQUT, *)
WRITE (NQUT,99999) ’NDIM =’, NDIM, ’ NPTS =/, NPTS
IFAIL = (

[NP1692/14)

D01 ~ Quadrature DO1GYF

CALL DO1GYF(NDIM,NPTS, VK, IFAIL)

WRITE (NOUT, *)
WRITE (NOUT,99998) ’‘Coefficients =’, (VK(I),I=1,NDIM)
STOP

*

99999 FORMAT (1X,A,I3,A,I16)

99998 FORMAT (1X,A,4F6.0)
END

9.2. Program Data
None.

9.3. Program Results
DO1GYF Example Program Results
NDIM = 4 NPTS = 631

Coefficients = 1. 198. 82. 461.

[NP1692/14) Page 3 (last)

DOI — Quadrature | DO01GZF

D01GZF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

DO1GZF calculates the optimal coefficients, for use by DO1GCF and DO1GDF, when the number
of points is the product of two primes.

Specification
SUBROUTINE DO1GZF (NDIM, NP1, NP2, VK, IFAIL)
INTEGER NDIM, NP1, NP2, IFAIL
real VK(NDIM)

Description

Korobov [1] gives a procedure for calculating optimal coefficients for p-point integration over
the n-cube [0,1]", when the number of points is

P =PiP2 (1)
where p, and p, are distinct prime numbers.

The advantage of this procedure is that if p, is chosen to be the nearest prime integer to p?, then

the number of elementary operations required to compute the rule is of the order of p** which
grows less rapidly than the number of operations required by DO1GYF. The associated error is
likely to be larger although it may be the only practical alternative for high values of p.

References

[1] KOROBOV, NM.
Number Theoretic Methods in Approximate Analysis.
Fizmatgiz, Moscow, 1963.

Parameters

NDIM - INTEGER. Input
On entry: the number of dimensions of the integral, ».
Constraint: NDIM 2 1.

NP1 - INTEGER. Input
On entry: the larger prime factor p, of the number of points in the integration rule.
Constraint: NP1 must be a prime number 2 5.

NP2 — INTEGER. Input
On entry: the smaller prime factor p, of the number of points in the integration rule. For
maximum efficiency, p2 should be close to p,.

Constraint: NP2 must be a prime number such that NP1 > NP2 2 2.

VK (NDIM) — real array. Output
On exit: the n optimal coefficients.

IFAIL — INTEGER. Input/ Output

Onentry: TFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

[NP1692/14] Page 1

D01GZF D01 — Quadrature

6.

9.1.

Page 2

Error Indicators and Warnings
Errors detected by the routine:
IFAIL =1

On entry, NDIM < 1.

IFAIL = 2
On entry, NP1 < 5,
or NP2 < 2,
or NP1 £ NP2.
IFAIL = 3

The value NP1xNP2 exceeds the largest integer representable on the machine, and hence
the optimal coefficients could not be used in a valid call of DO1GCF.

IFAIL = 4
On entry, NP1 is not a prime number.

IFAIL = 5
On entry, NP2 is not a prime number.

IFAIL = 6

The precision of the machine is insufficient to perform the computation exactly. Try smaller
values of NP1 or NP2, or use an implementation with higher precision.

Accuracy
The optimal coefficients are returned as exact integers (though stored in a real array).

Further Comments
The time taken by the routine grows at least as fast as (p 1pz)“”. (See Section 3.)

Example

This example program calculates the Korobov optimal coefficients where the number of
dimensons is 4 and the number of points is the product of the two prime numbers, 89 and 11.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO1GZF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters

INTEGER NDIM

PARAMETER (NDIM=4)

INTEGER NOUT

PARAMETER (NOUT=6)
* .. Local Scalars ..

INTEGER I, IFAIL, NP1, NP2
* .. Local Arrays

real VK(NDIM)
* .. External Subroutines

EXTERNAL DO1GzZF

[NP1692/14)

D01 — Quadrature DO01GZF

* .. Executable Statements ..
WRITE (NOUT,*) ‘DO1lGZF Example Program Results’
NP1 = 89
NP2 = 11

WRITE (NOUT, *)
WRITE (NOUT,99999) ’/NDIM =/, NDIM, ’ NP1 =/, NP1, ’ NP2 =', NP2
IFAIL = 0

CALL DO1GZF(NDIM,NP1,NP2,VK, IFAIL)

WRITE (NOUT, *)
WRITE (NOUT,99998) ’‘Coefficients =’, (VK(I),I=1,NDIM)
STOP

*

99999 FORMAT (1X,A,I3,A,I16,A,I6)
99998 FORMAT (1X,A,4F6.0)
END

9.2. Program Data
None.

9.3. Program Results
DO01GZF Example Program Results

NDIM = 4 NP1 = 89 NP2 = 11

Coefficients = 1. 102. 614. 951.

[NP1692/14) Page 3 (last)

DO1 — Quadrature DO1JAF

DOIJAF — NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

DO1JAF attempts to evaluate an integral over an n-dimensional sphere (n = 2, 3, or 4), to a user
specified absolute or relative accuracy, by means of a modified Sag-Szekeres method. The
routine can handle singularities on the surface or at the centre of the sphere, and returns an error
estimate.

Specification
SUBROUTINE DO1JAF (F, NDIM, RADIUS, EPSA, EPSR, METHOD, ICOORD, RESULT,
1 ESTERR, NEVALS, IFAIL)
INTEGER NDIM, METHOD, ICOORD, NEVALS, IFAIL
real F, RADIUS, EPSA, EPSR, RESULT, ESTERR
EXTERNAL F
Description

This routine calculates an approximation to the n-dimensional integral
I= J IF(:C,,...,Jc,,)dxl . dx,, 2<n<4,
S

where S is the hypersphere

VO 4xl) S @<

(the integrand function may also be defined in spherical co-ordinates). The algorithm is based on
the Sag-Szekeres method [1], applying the product trapezoidal formula after a suitable radial
transformation. An improved transformation technique is developed: depending on the behaviour
of the function and on the required accuracy, different transformations can be used, some of
which are ‘double exponential’, as defined by Takahasi and Mori [2]. The resulting technique
allows the routine to deal with integrand singularities on the surface or at the centre of the sphere.
When the estimated error of the approximation with mesh size h is larger than the tolerated error,
the trapezoidal formula with mesh size 4/2 is calculated. A drawback of this method is the
exponential growth of the number of function evaluations in the successive approximations (this
number grows with a factor = 2"). This introduces the restriction n < 4. Because the
convergence rate of the successive approximations is normally better than linear, the error
estimate is based on the linear extrapolation of the difference between the successive
approximations [3,4]. For further details of the algorithm, see Roose and de Doncker [4].

References

[1] SAG, T.W. and SZEKERES, G.
Numerical Evaluation of High-dimensional Integrals.
Math. Comp. 18, pp. 245-253, 1964.

[2] TAKAHASI, H. and MORI, M.
Double Exponential Formulas for Numerical Integration.
Publ. RIMS, Kyoto Univ. 9, pp. 721-741, 1974.

[3] ROBINSON, I and DE DONCKER, E.
Automatic Computation of Improper Integrals over a Bounded or Unbounded Planar
Region.
Computing, 27, pp. 89-284, 1981.

[4] ROOSE, D. and DE DONCKER, E.
Automatic Integration over a Sphere.
J. Comp. Appl. Math., 7, pp. 203-224, 1981.

[NP1692/14] Page 1

DO1JAF DO1 - Quadrature

5. Parameters

1: F — real FUNCTION, supplied by the user. External Procedure
F must return the value of the integrand f at a given point.
Its specification is:

real FUNCTION F(NDIM, X)

INTEGER NDIM
real X (NDIM)
1: NDIM - INTEGER. Input
On entry: the number of dimensions of the integral, n.
2: X(NDIM) - real array. Input

On entry: the co-ordinates of the point at which the integrand must be evaluated.
These co-ordinates are given in Cartesian or spherical polar form according to the
value of ICOORD (see below).

F must be declared as EXTERNAL in the (sub)program from which DO1JAF is called.
Parameters denoted as /nput must not be changed by this procedure. See also Section 8.

22 NDIM - INTEGER. Input
On entry: the dimension of the sphere, n.
Constraint: 2 < NDIM < 4.

3: RADIUS - real. Input
On entry: the radius of the sphere, .
Constraint: RADIUS 2 0.0.

4. EPSA - real. Input
On entry: the requested absolute tolerance. If EPSA < 0.0, its absolute value is used. See
Section 7.

5: EPSR - real. Input

On entry: the requested relative tolerance. If EPSR < 0.0, its absolute value is used. If
EPSR < 10x(machine precision), the latter value is used as EPSR by the routine. See
Section 7.

6: METHOD - INTEGER. Input

On entry: METHOD must specify the transformation to be used by the routine. The choice
depends on the behaviour of the integrand and on the required accuracy.

For well-behaved functions and functions with mild singularities on the surface of the
sphere only:

low accuracy required: METHOD
high accuracy required: METHOD

1
2
for functions with severe singularities on the surface of the sphere only:
3
4

low accuracy required: METHOD
high accuracy required: METHOD

(in this case ICOORD must be set to 2, and the function defined in special spherical
co-ordinates).

For functions with a singularity at the centre of the sphere (and possibly with singularities
on the surface as well):

low accuracy required: METHOD
high accuracy required: METHOD

5
6

Page 2 [NP1692/14]

DO1 — Quadrature DOLJAF

7:

10:

11:

METHOD = 0 can be used as a default value and is equivalent to METHOD = 1 if
EPSR > 107, and to METHOD = 2 if EPSR < 10°°.

The distinction between low and high required accuracies, as mentioned above, depends
also on the behaviour of the function. Roughly one may assume the critical value of EPSA
and EPSR to be 107, but the critical value will be smaller for a well-behaved integrand and
larger for an integrand with severe singularities.

Suggested value: METHOD = 0.
Constraint: 0 £ METHOD < 6. If ICOORD = 2, METHOD = 3 or 4.

ICOORD - INTEGER. Input

On entry: ICOORD must specify which kind of co-ordinates are used in the user-supplied
function F.

ICOORD = 0,

Cartesian co-ordinates x,, for i = 1,2,...,n.
ICOORD = 1,

spherical co-ordinates (see Section 8.2): X(1) = p; X(i) = 6., fori = 2,3,...n.
ICOORD = 2,

special spherical polar co-ordinates (see Section 8.3), with the additional
transformation p = @ - A: X(1) = A = o - p; X(i) = 6_,,fori = 2,3,....n.

Constraint: ICOORD = 0, 1 or 2. If METHOD = 3 or 4, ICOORD = 2.

RESULT - real. Output
On exit: the approximation to the integral.

ESTERR - real. Output
On exit: an estimate of the modulus of the absolute error.

NEVALS - INTEGER. Output
On exit: the number of function evaluations used.

IFAIL — INTEGER. Input! Output

On entry: TFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter
should refer to Chapter PO1 for details.

Onexit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL # 0
on exit, users are recommended to set IFAIL to —1 before entry. It is then essential to test
the value of IFAIL on exit. To suppress the output of an error message when soft failure
occurs, set IFAIL to 1.

Error Indicators and Warnings
Errors or warnings specified by the routine:
IFAIL = 1

The required accuracy cannot be achieved within a limiting number of function evaluations
(which is set by the routine).

IFAIL = 2
The required accuracy cannot be achieved because of roundoff error.

[NP1692/14] Page 3

DO1JAF DO1 - Quadrature

8.2.

8.3.

Page 4

IFAIL = 3
The required accuracy cannot be achieved because the maximum accuracy with respect to
the machine constants X02AJF and X02AMF has been attained. If this maximum accuracy
is rather low (compared with X02AJF), the cause of the problem is a severe singularity on
the boundary or at the centre of the sphere. If METHOD = 0, 1 or 2, then setting
METHOD = 3 or 4 may help.

IFAIL = 4
On entry, NDIM < 2 or > 4,
or RADIUS < 0.0,
or METHOD < 0 or > 6,
or ICOORD < Qor > 2,
or ICOORD = 2 and METHOD # 3 or 4,
or METHOD = 3 or 4 and ICOORD # 2.

No calculations have been performed. RESULT and ESTERR are set to 0.0.

Accuracy

The user can specify an absolute and/or a relative tolerance, setting EPSA and EPSR. The
routine attempts to calculate an approximation RESULT such that

|I-RESULT| < max{EPSA,EPSRx|/|}.

If 0 < IFAIL < 3, ESTERR returns an estimate of, but not necessarily a bound for,
[I-RESULT].

Further Comments

.1. Timing

Timing depends on the integrand and the accuracy required.

Spherical Polar Co-ordinates

Cartesian co-ordinates are related to the spherical polar co-ordinates by:
x, = psin@, .. sinf,,sinb,
X, = psin@, .. sin@, ,.cosb,_,
X3 = psin@, .. cos6,,

X, = p.cos 6,
where 0 < 6, < m, fori = 1,2,.,n—2and 0 < 6, , < 2.

Machine Dependencies

As a consequence of the transformation technique, the severity of the singularities which can be
handled by the routine depends on the precision and range of real numbers on the machine.
METHOD = 3 or 4 must be used when the singularity on the surface is ‘severe’ in view of the
requested accuracy and machine precision. In practice one has to set METHOD = 3 or 4 if
DO1JAF terminates with IFAIL = 3 when called with METHOD = 0, 1 or 2.

When integrating a function with a severe singular behaviour on the surface of the sphere, the
additional transformation p = a — A helps to avoid the loss of significant figures due to
round-off error in the calculation of the integration nodes which are very close to the surface. For
these points, the value of A can be computed more accurately than the value of p. Naturally, care
must be taken that the function subprogram does not contain expressions of the form a — A,
which could cause a large round-off error in the calculation of the integrand at the boundary of
the sphere.

Care should be taken to avoid underflow and/or overflow problems in the function subprogram,
because some of the integration nodes used by DO1JAF may be very close to the surface or to the
centre of the sphere.

[NP1692/14]

DO0!I - Quadrature DO1JAF

9.1.

Example:
suppose the function
f(Q) = (1_02)—0.7

is to be integrated over the unit sphere, with METHOD = 3 or 4. Then ICOORD should be
set to 2; the transformation o = 1-4 gives f(9) = (24—4%) 7; and F could be coded thus:

“F =1.0

A = X(1)

IF (A.GT.0.0) F = 1.0/(A*(2.0-A))**0.7
RETURN

Note that DO1JAF ensures that A = X (1) > X02AMF, but underflow could occur in the
computation of AZ.

Example
The program following evaluates the integrals

J 134117 dx, .. dr,
where g = \/i? , and S is the unit sphere of dimension n = 2 or 4.
The exact values (to 12 decimal places) are 6.28318530718 and 13.1594725348.
Program Text
Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read

the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO1JAF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Local Scalars ..
real EPSA, EPSR, ESTERR, RADIUS, RELEST, RESULT
INTEGER ICOORD, IFAIL, ITEST, METHOD, NDIM, NEVALS
* .. Local Arrays ..
INTEGER ND(2)
* .. External Functions ..
real F
EXTERNAL F
* .. External Subroutines ..
EXTERNAL DO1JAF
* .. Data statements ..
DATA ND/2, 4/
* .. Executable Statements ..
WRITE (NOUT,*) ‘DO1JAF Example Program Results’
RADIUS = 1.0e0
METHOD = 0
ICOORD = 1
EPSA = 0.0e0
EPSR = 0.5e-4
DO 20 ITEST =1, 2

NDIM = ND(ITEST)
IFAIL = 1

[NP2834117) Page 5

D01JAF

D01 - Quadrature

CALL DO1JAF(F,NDIM,RADIUS,EPSA, EPSR,METHOD, ICOORD,RESULT,

WRITE (NOUT, *)
IF (IFAIL.NE.O) THEN

ESTERR, NEVALS, IFAIL)

WRITE (NOUT,99999) “IFAIL =/, IFAIL
WRITE (NOUT, *)
. END IF
IF (IFAIL.LE.3) THEN
RELEST = ESTERR/RESULT
WRITE (NOUT,99999) ‘Dimension of the sphere =/, NDIM
WRITE (NOUT,99998) ‘Requested relative tolerance =/, EPSR
WRITE (NOUT,99997) ‘Approximation to the integral =/, RESULT
WRITE (NOUT,99999) ’No. of function evaluations =/, NEVALS
WRITE (NOUT,99998) ‘Estimated relative error =/, RELEST
END IF
20 CONTINUE
STOP
*
99999 FORMAT (1X,A,I5)
99998 FORMAT (1X,A,e9.2)
99997 FORMAT (1X,A,F9.5)
END
*
real FUNCTION F(NDIM,X)
* .. Scalar Arguments ..
INTEGER NDIM
* .. Array Arguments ..
real X(NDIM)
* .. Local Scalars ..
real A, RHO
* .. Intrinsic Functions
INTRINSIC SQRT
* .. Executable Statements ..
RHO = X(1)
F = 0.0e0
A = (1.0e0-RHO)*(1.0e0+RHO)
IF (A.NE.0.0e0) F = 1.0e0/SQRT(A)
RETURN
END
9.2. Program Data
None.
9.3. Program Results
DO1JAF Example Program Results
Dimension of the sphere = 2
Requested relative tolerance = 0.50E-04
Approximation to the integral = 6.28319
No. of function evaluations = 193
Estimated relative error = 0.31E-04
Dimension of the sphere = 4
Requested relative tolerance = 0.50E-04
Approximation to the integral = 13.16004
No. of function evaluations = 2873
Estimated relative error = 0.40E-04
Page 6 (last) (NP2834117)

DO1 - Quadrature DO1PAF

DO1PAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

DO1PAF returns a sequence of approximations to the integral of a function over a multi-
dimensional simplex, together with an error estimate for the last approximation.

Specification
SUBROUTINE DO1PAF (NDIM, VERTEX, IV1, IV2, FUNCTN, MINORD, MAXORD,
1 FINVLS, ESTERR, IFAIL)
INTEGER NDIM, IV1, IV2, MINORD, MAXORD, IFAIL
real VERTEX(IV1,IV2), FUNCTN, FINVLS (MAXORD), ESTERR
EXTERNAL FUNCTN

Description

The subroutine computes a sequence of approximations FINVLS (j),
for j = MINORD+1,MINORD+2,..., MAXORD, to an integral

j f(x]rxzrn-;x")dxl de .oe dxn
s

where § is an n-dimensional simplex defined in terms of its n + 1 vertices. FINVLS(j) is an
approximation which will be exact (except for rounding errors) whenever the integrand is a
polynomial of total degree 2j — 1 or less.

The type of method used has been described by Grundmann and Moller [1], and is implemented
in an extrapolated form using the theory from de Doncker [2].

References

[1] GRUNDMANN, A. and MOLLER, HM.
Invariant Integration Formulas for the n-simplex by Combinatorial Methods.
SIAM J. Numer. Anal,, 15, pp. 282-290, 1978.

[2] DE DONCKER, E.
New Euler Maclaurin Expansions and their Application to Quadrature over the
s-dimensional Simplex.
Math. Comp., 33, pp. 1003-1018, 1979.

Parameters

NDIM - INTEGER. Inpur
On entry: the number of dimensions of the integral, n.
Constraint: NDIM 2 2.

VERTEX(IV1,IV2) — real array. Input/ Output

On entry: VERTEX(i,j) must be set to the jth component of the ith vertex for the simplex
integration region, for i = 1,2,..,n+1; j = 1,2,...,n. If MINORD > 0, VERTEX must be
unchanged since the previous call of DO1PAF.

On exit: these value are unchanged. The rest of the array VERTEX is used for workspace

and contains information to be used if another call of DO1PAF is made with MINORD > 0.
In particular VERTEX (n+1,2n+2) contains the volume of the simplex.

[NP1692/14] Page 1

DO1PAF DOI — Quadrature

w

10:

Page 2

IV1 — INTEGER. Input

On entry: the first dimension of the array VERTEX as declared in the (sub)program from
which DO1PAF is called.

Constraint: IV1 2 NDIM + 1.

IV2 — INTEGER. Input

On entry: the second dimension of the array VERTEX as declared in the (sub)program
from which DO1PAF is called.

Constraint: IN2 2 2x(NDIM+1).

FUNCTN - real FUNCTION, supplied by the user. External Procedure
FUNCTN must return the value of the integrand f at a given point.
Its specification is:

real FUNCTION FUNCTN (NDIM, X)
INTEGER NDIM
real X (NDIM)

1: NDIM — INTEGER. Input
On entry: the number of dimensions of the integral, n.

22 X(NDIM) - real array. Input
On entry: the co-ordinates of the point at which the integrand must be evaluated.

FUNCTN must be declared as EXTERNAL in the (sub)program from which DO1PAF is
called. Parameters denoted as /nput must not be changed by this procedure.

MINORD - INTEGER. Input! Output

On entry: MINORD must specify the highest order of the approximations currently available
in the array FINVLS. MINORD = 0 indicates an initial call, MINORD > 0 indicates that
FINVLS(1),FINVLS(2),... FINVLS(MINORD) have already been computed in a
previous call of DO1PAF.

Constraint: MINORD 2 0.
On exit: MINORD = MAXORD.

MAXORD - INTEGER. Input
On entry: the highest order of approximation to the integral to be computed.
Constraint: MAXORD > MINORD.

FINVLS (MAXORD) - real array. Input/ Output

On entry: FINVLS(1),FINVLS(2),...,FINVLS (MINORD) must contain approximations to
the integral previously computed by DO1PAF.

On exit: FINVLS contains these values unchanged, and the newly computed values
FINVLS (MINORD+1) ,FINVLS (MINORD+2),... FINVLS(MAXORD). FINVLS(j) is
an approximation to the integral of polynomial degree 2j — 1.

ESTERR - real. Output
On exit: an absolute error estimate for FINVLS (MAXORD).

IFAIL — INTEGER. Input/ Output

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = O unless the routine detects an error (see Section 6).

[NP1692/14])

DOI — Quadrature DO01PAF

6. Error Indicators and Warnings
Errors detected by the routine:

IFAIL =1
On entry, NDIM < 2,
or IV1 < NDIM + 1,
or IV2 < 2x(NDIM+1),
or MINORD < 0,
or MAXORD £ MINORD.
IFAIL = 2

The volume of the simplex integration region (computed as a determinant by FO3AAF) is
too large or too small to be representable in the machine.

7. Accuracy
An absolute error estimate is output through the parameter ESTERR.

8. Further Comments

The running time for DO1PAF will usually be dominated by the time used to evaluate the
integrand FUNCTN. The maximum time that could be used by DO1PAF will be approximately
given by

(MAXORD+NDIM)!
(MAXORD-1)!(NDIM+1)!
where T is the time needed for one call of FUNCTN.

Tx

9. Example
A program demonstrating the use of the subroutine with the integral
1 pl-x pl-x-y
J J J exp(x+y+z)cos(x+y+z) dz dy dx =}
[Rg1] 0
is given below.

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO1PAF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters
INTEGER NDIM, IV1, IV2, MXORD
PARAMETER (NDIM=3, IV1=NDIM+1l, IV2=2*(NDIM+1),MXORD=5)
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Local Scalars ..
real ESTERR
INTEGER IFAIL, J, K, MAXORD, MINORD, NEVALS
* .. Local Arrays ..
real FINVLS(MXORD), VERTEX(IV1,IV2)
* .. External Functions
real FUNCTN
EXTERNAL FUNCTN
* .. External Subroutines
EXTERNAL DO1PAF

[NP1692/14] Page 3

DO1PAF D01 — Quadrature

* .. Executable Statements ..
WRITE (NOUT,*) ’‘DO1PAF Example Program Results’
DO 40 J =1, IVl
DO 20 K = 1, NDIM
VERTEX(J,K) = 0.0e0
20 CONTINUE
IF (J.GT.1l) VERTEX(J,J-1) = 1.0e0
40 CONTINUE
MINORD = O .
NEVALS = 1
WRITE (NOUT, *)
WRITE (NOUT, *)
+ ’MAXORD Estimated Estimated Integrand’
WRITE (NOUT, *)
+ 7 value accuracy evaluations’
DO 60 MAXORD = 1, MXORD
IFAIL = 0

CALL DO1PAF(NDIM,VERTEX,IV1,IVZ, FUNCTN,MINORD, MAXORD, FINVLS,
+ ESTERR, IFAIL)

WRITE (NOUT, 99999) MAXORD, FINVLS(MAXORD), ESTERR, NEVALS
NEVALS = (NEVALS*(MAXORD+NDIM+1))/MAXORD
60 CONTINUE
STOP
*
99999 FORMAT (1X,I4,F13.5,el16.3,I15)
END
*
real FUNCTION FUNCTN(NDIM, X)
* .. Scalar Arguments ..
INTEGER NDIM
* .. Array Arguments ..
real X(NDIM)
* .. Intrinsic Functions ..
INTRINSIC COS, EXP
* .. Executable Statements ..
FUNCTN = EXP(X(1)+4X(2)4X(3))*COS(X(1)+X(2)+X(3))
RETURN
END

9.2. Program Data
None.

9.3. Program Results
DO1PAF Example Program Results

MAXORD Estimated Estimated Integrand
value accuracy evaluations

1 0.25816 0.258E+00 1

2 0.25011 0.806E-02 5

3 0.25000 0.107E-03 15

4 0.25000 0.410E-06 35

5 0.25000 0.173E-08 70

Page 4 (last) [NP1692/14]

Chapter D02 — Ordinary Differential Equations

Note. Please refer to the Users’ Note for your implementation to check that a routine is available.

Routine Mark of

Name Introduction Purpose

DO2AGF 2 ODEs, boundary value problem, shooting and matching technique,
allowing interior matching point, general parameters to be determined

DO2BGF 7 ODEs, IVP, Runge-Kutta—Merson method, until a component attains
given value (simple driver)

DO2BHF 7 ODEs, IVP, Runge-Kutta—Merson method, until function of solution is
zero (simple driver)

DO2BJF 18 ODEs, IVP, Runge-Kutta method, until function of solution is zero,
integration over range with intermediate output (simple driver)

DO2CJF 13 ODEs, IVP, Adams method, until function of solution is zero, interme-
diate output (simple driver)

DO2EJF 12 ODEs, stiff IVP, BDF method, until function of solution is zero,
intermediate output (simple driver)

DO2GAF 8 ODEs, boundary value problem, finite difference technique with deferred
correction, simple nonlinear problem

DO2GBF 8 ODEs, boundary value problem, finite difference technique with deferred
correction, general linear problem

DO2HAF 8 ODEs, boundary value problem, shooting and matching, boundary
values to be determined

DO2HBF 8 ODEs, boundary value problem, shooting and matching, general param-
eters to be determined

DO2JAF 8 ODEs, boundary value problem, collocation and least-squares, single nth
order linear equation

DO2JBF 8 ODEs, boundary value problem, collocation and least-squares, system of
1st order linear equations

DO2KAF 7 2nd order Sturm-Liouville problem, regular system, finite range, eigen-
value only

DO2KDF 7 2nd order Sturm-Liouville problem, regular/singular system, fi-
nite/infinite range, eigenvalue only, user-specified break-points

DO2KEF 8 2nd order Sturm-Liouville problem, regular/singular system, fi-
nite/infinite range, eigenvalue and eigenfunction, user-specified break-
points '

DO2LAF 13 2nd order ODEs, IVP, Runge-Kutta-Nystrom method

DO2LXF 13 2nd order ODEs, IVP, set-up for DO2LAF

DO2LYF 13 2nd order ODEs, IVP, diagnostics for DO2LAF

DO2LZF 13 2nd order ODEs, IVP, interpolation for DO2LAF

DO2MVF 14 ODEs, IVP, DASSL method, set-up for D02M-N routines

DO2MZF 14 ODEs, IVP, interpolation for D02M-N routines, natural interpolant

DO2NBF 12 Explicit ODEs, stiff IVP, full Jacobian (comprehensive)

DO2NCF 12 Explicit ODEs, stiff IVP, banded Jacobian (comprehensive)

DO2NDF 12 Explicit ODEs, stiff IVP, sparse Jacobian (comprehensive)

DO2NGF 12 Implicit/algebraic ODEs, stiff IVP, full Jacobian (comprehensive)

DO2NHF 12 Implicit/algebraic ODEs, stiff IVP, banded Jacobian (comprehensive)

DO2RJF 12 Implicit/algebraic ODEs, stiff IVP, sparse Jacobian (comprehensive)

DO2NMF 12 Explicit ODEs, stiff IVP (reverse communication, comprehensive)

DO2NNF 12 Implicit/algebraic ODEs, stiff IVP (reverse communication,
comprehensive)

DO2NRF 12 ODEs, IVP, for use with DO2M-N routines, sparse Jacobian, enquiry

routine

DO2NSF

DO2NTF

DO2NUF

DO2NVF
DO2NWF
DO2NXF

DO2NYF
DO2NZF

DO2PCF
DO2PDF
DO2PVF
DO2PWF
DO2PXF
DO2PYF
DO2PZF
DO2QFF

DO2QGF
DO2QWF
DO2QXF
DO2QYF
DO2QZF
DO2RAF
DO2SAF
DO2TGF
DO2TKF
DO2TVF
DO2TXF
DO2TYF
DO2TZF
DO2XJF

DO2XKF
DO2ZAF

12

12

12

12
12
12

12
12

16
16
16
16
16
16
16
13

13

13
13
13
13

17
17
17

17
17
12

12
12

ODEs, IVP, for use with DO2M-N routines, full Jacobian, linear algebra
set-up

ODEs, IVP, for use with DO2M-N routines, banded Jacobian, linear
algebra set-up

ODEs, IVP, for use with DO2M-N routines, sparse Jacobian, linear
algebra set-up

ODEs, IVP, BDF method, set-up for DO2M-N routines

ODEs, IVP, Blend method, set-up for DO2M-N routines

ODEs, IVP, sparse Jacobian, linear algebra diagnostics, for use with
D02M-N routines

ODEs, IVP, integrator diagnostics, for use with DO02M-N routines
ODEs, IVP, set-up for continuation calls to integrator, for use with
D02M-N routines

ODEs, IVP, Runge-Kutta method, integration over range with output
ODEs, IVP, Runge-Kutta method, integration over one step

ODEs, IVP, set-up for DO2PCF and DO2PDF

ODEs, IVP, resets end of range for DO02PDF

ODEs, IVP, interpolation for DO2PDF

ODEs, IVP, integration diagnostics for DO2PCF and D02PDF

ODEs, IVP, error assessment diagnostics for DO2PCF and DO2PDF
ODEs, IVP, Adams method with root-finding (forward communication,
comprehensive)

ODEs, IVP, Adams method with root-finding (reverse communication,
comprehensive)

ODEs, IVP, set-up for DO2QFF and D02QGF

ODEs, IVP, diagnostics for DO2QFF and D02QGF

ODEs, IVP, root-finding diagnostics for DO2QFF and D02QGF

ODEs, IVP, interpolation for DO2QFF or D02QGF

ODEs, general nonlinear boundary value problem, finite difference
technique with deferred correction, continuation facility

ODEs, boundary value problem, shooting and matching technique, sub-
ject to extra algebraic equations, general parameters to be determined
nth order linear ODEs, boundary value problem, collocation and least-
squares

ODEs, general nonlinear boundary value problem, collocation technique
ODEs, general nonlinear boundary value problem, set-up for DO2TKF
ODEs, general nonlinear boundary value problem, continuation facility
for DO2TKF

ODEs, general nonlinear boundary value problem, interpolation for
DO2TKF ,

ODEs, general nonlinear boundary value problem, diagnostics for
D02TKF

ODEs, IVP, interpolation for D02M-N routines, natural interpolant
ODEs, IVP, interpolation for DO2M-N routines, C; interpolant

ODEs, IVP, weighted norm of local error estimate for DO2M-N routines

D02 - Ordinary Differential Equations Introduction - D02

Chapter D02

Ordinary Differential Equations

Contents
1 Scope of the Chapter 2
2 Background to the Problems 2
9.1 Initial Value Problems o o o 3
2.2 Boundary Value Problems 3
2921 Collocationmethods 4
2.2.2 Shootingmethods 4
2.2.3 Finite-difference methods 4
2.3 Chebyshev Collocation for Linear Differential Equations 4
2.4 FEigenvalue Problems 4
3 Recommendations on Choice and Use of Available Routines 5
3.1 Initial Value Problems e 5
3.1.1 Runge-Kuttaroutines 5
3.1.2 AdamsTOUbINeS e e e e e e e 5
3.1.3 BDF TOULINES . . . o o o ot et e e e e e e e e e e e e 6
3.1.4 Runge-Kutta—Nystrom routines 6
3.2 Boundary Value Problems 6
3.2.1 Collocationmethods 6
322 Shootingmethods L o 6
3.2.3 Finite-difference methods oo 7
3.3 Chebyshev Collocation Method 7
3.4 Eigenvalue Problems 7
3.5 Summary of Recommended Routines 8
4 Routines Withdrawn or Scheduled for Withdrawal 9
5 References 9

[NP3086/18] D02.1

Introduction — D02 D02 - Ordinary Differential Equations

1 Scope of the Chapter

This chapter is concerned with the numerical solution of ordinary differential equations. There are two
main types of problem, those in which all boundary conditions are specified at one point (initial value
problems), and those in which the boundary conditions are distributed between two or more points
(boundary value problems and eigenvalue problems). Routines are available for initial value problems,
two-point boundary value problems and Sturm-Liouville eigenvalue problems.

2 Background to the Problems

For most of the routines in this chapter a system of ordinary differential equations must be written in
the form

yll = fl(z7y11y2)~~'ayn):
y,2 = fz(x)ylay2)"')yn))

y:l = fn(zaylyyzy .. ')yn))

that is the system must be given in first-order form. The n dependent variables (also, the solution)

Y1,Ys, - - -» Yy are functions of the independent variable z, and the differential equations give expressions
for the first derivatives y; = % in terms of z and y,,¥,, - .., Y,. For a system of n first-order equations,

n associated boundary conditions are usually required to define the solution.

A more general system may contain derivatives of higher order, but such systems can almost always
be reduced to the first-order form by introducing new variables. For example, suppose we have the
third-order equation

2" 422" + k(1= 2"%) = 0.

We write y; = z, y, = 2/, y3 = 2", and the third-order equation may then be written as the system of
first-order equations

Y1 =Y,

Yy = Y3
vs = —vvs — k(1 - 3).

For this system n = 3 and we require 3 boundary conditions in order to define the solution. These
conditions must specify values of the dependent variables at certain points. For example, we have an
initial value problem if the conditions are:

y,=0 at z=0
yp=0 at z=0
y3=01 at z=0.

These conditions would enable us to integrate the equations numerically from the point £ = 0 to some
specified end-point. We have a boundary value problem if the conditions are:

yy=0 at z=0
y=0 at z=0
yo=1 at z =10

These conditions would be sufficient to define a solution in the range 0 < z < 10, but the problem could
not be solved by direct integration (see Section 2.2). More general boundary conditions are permitted in
the boundary value case.

It is sometimes advantageous to solve higher-order systems directly. In particular, there is an initial value

D02.2 [NP3086/18]

D02 - Ordinary Differential Equations Introduction — D02

routine to solve a system of second-order ordinary differential equations of the special form

ylll = fl(z)y11y2x'~~vyn)v

y’2/ = f2(x1y11y2a"')yn)a

y;: = fn(z’ylyyz’ . '1yn)'

For this second-order system initial values of the derivatives of the dependent variables, y;, for i =
1,2,...,n, are required.

There is also a boundary value routine that can treat directly a mixed order system of ordinary differential
equations.

There is a broader class of initial value problems known as differential algebraic systems which can be
treated. Such a system may be defined as

v = f(z,y,2)
0 = g(z,y,2)

where y and f are vectors of length n and g and z are vectors of length m. The functions g represent the
algebraic part of the system.

In addition implicit systems can also be solved, that is systems of the form

A(z,y)y = f(z,9)

where A is a matrix of functions; such a definition can also incorporate algebraic equations. Note
that general systems of this form may contain higher-order derivatives and that they can usually be
transformed to first-order form, as above.

2.1 Initial Value Problems

To solve first-order systems, initial values of the dependent variables y;, for i = 1,2,...,n, must be
supplied at a given point, a. Also a point, b, at which the values of the dependent variables are
required, must be specified. The numerical solution is then obtained by a step-by-step calculation
which approximates values of the variables y;, for ¢ = 1,2,...,n, at finite intervals over the required
range [a,b]. The routines in this chapter adjust the step length automatically to meet specified accuracy
tolerances. Although the accuracy tests used are reliable over each step individually, in general an
accuracy requirement cannot be guaranteed over a long range. For many problems there may be no
serious accumnulation of error, but for unstable systems small perturbations of the solution will often
lead to rapid divergence of the calculated values from the true values. A simple check for stability is
to carry out trial calculations with different tolerances; if the results differ appreciably the system is
probably unstable. Over a short range, the difficulty may possibly be overcome by taking sufficiently
small tolerances, but over a long range it may be better to try to reformulate the problem.

A special class of initial value problems are those for which the solutions contain rapidly decaying transient
terms. Such problems are called stiff; an alternative way of describing them is to say that certain
eigenvalues of the Jacobian matrix (gf;-) have large negative real parts when compared to others. These
problems require special methods for efficient numerical solution; the methods designed for non-stiff
problems when applied to stiff problems tend to be very slow, because they need small step lengths to
avoid numerical instability. A full discussion is given in Hall and Watt [9] and a discussion of the methods
for stiff problems is given in Berzins et al. [4].

2.2 Boundary Value Problems

In general, a system of nonlinear differential equations with boundary conditions at two or more points
cannot be guaranteed to have a solution. The solution, if it exists, has to be determined iteratively. A
comprehensive treatment of the numerical solution of boundary value problems can be found in [1] and
[10]. The methods for this chapter are discussed in [3], [2] and [7.

[NP3086,/18] D02.3

Introduction — D02 D02 - Ordinary Differential Equations

2.2.1 Collocation methods

In the collocation method, the solution components are approximated by piecewise polynomials on a
mesh. The coefficients of the polynomials form the unknowns to be computed. The approximation to
the solution must satisfy the boundary conditions and the differential equations at collocation points in
each mesh subinterval. A modified Newton method is used to solve the nonlinear equations. The mesh
is refined by trying to equidistribute the estimated error over the whole interval. An initial estimate of
the solution across the mesh is required.

2.2.2 Shooting methods

In the shooting method, the unknown boundary values at the initial point are estimated to form an
initial value problem, and the equations are then integrated to the final point. At the final point the
computed solution and the known boundary conditions should be equal. The condition for equality gives
a set of nonlinear equations for the estimated values, which can be solved by Newton’s method or one of
its variants. The iteration cannot be guaranteed to converge, but it is usually successful if:

- the system has a solution,
— the system is not seriously unstable or very stiff for step-by-step solution, and

- good initial estimates can be found for the unknown boundary conditions.

It may be necessary to simplify the problem and carry out some preliminary calculations, in order to
obtain suitable starting values. A fuller discussion is given in Chapters 16, 17 and 18 of Hall and Watt
[9], Chapter 11 of Gladwell and Sayers [8] and Chapter 8 of Childs et al. [5].

2.2.3 Finite-difference methods

If a boundary value problem seems insoluble by the above methods and a good estimate for the solution
of the problem is known at all points of the range then a finite-difference method may be used. Finite-
difference equations are set up on a mesh of points and estimated values for the solution at the grid
points are chosen. Using these estimated values as starting values a Newton iteration is used to solve the
finite-difference equations. The accuracy of the solution is then improved by deferred corrections or the
addition of points to the mesh or a combination of both. The method does not suffer from the difficulties
associated with the shooting method but good initial estimates of the solution may be required in some
cases and the method is unlikely to be successful when the solution varies very rapidly over short ranges.
A discussion is given in Chapters 9 and 11 of Gladwell and Sayers [8] and Chapter 4 of Childs et al. [5)].

2.3 Chebyshev Collocation for Linear Differential Equations

The collocation method gives a different approach to the solution of ordinary differential equations. It
can be applied to problems of either initial value or boundary value type. Suppose the approximate
solution is represented in polynomial form, say as a series of Chebyshev polynomials. The coefficients
may be determined by matching the series to the boundary conditions, and making it satisfy the
differential equation at a number of selected points in the range. The calculation is straightforward
for linear differential equations (nonlinear equations may also be solved by an iterative technique based
on linearisation). The result is a set of Chebyshev coefficients, from which the solution may be evaluated
at any point using EO2AKF. A fuller discussion is given in Chapter 24 of Childs et al. [5] and Chapter
11 of Gladwell and Sayers [8].

This method can be useful for obtaining approximations to standard mathematical functions. For
example, suppose we require values of the Bessel function J (z) over the range (0,5), for use in another

3
calculation. We solve the Bessel differential equation by collocation and obtain the Chebyshev coefficients
of the solution, which we can use to construct a function for J1 (z). (Note that routines for many common

standard functions are already available in the NAG Library, Chapter S).

2.4 Eigenvalue Problems

Sturm-Liouville problems of the form

(p(z)y') + q(z,\)y =0

D02.4 [NP3086/18]

D02 - Ordinary Differential Equations Introduction — D02

with appropriate boundary conditions given at two points, can be solved by a Scaled Prufer method.
In this method the differential equation is transformed to another which can be solved for a specified
eigenvalue by a shooting method. A discussion is given in Chapter 11 of Gladwell and Sayers [8] and a
complete description is given in Pryce [11]. Some more general eigenvalue problems can be solved by the
methods described in Section 2.2.

3 Recommendations on Choice and Use of Available Routines

Note. Refer to the Users’ Note for your implementation to check that a routine is available.

There are no routines which deal directly with COMPLEX equations. These may however be transformed
to larger systems of real equations of the required form. Split each equation into its real and imaginary
parts and solve for the real and imaginary parts of each component of the solution. Whilst this process
doubles the size of the system and may not always be appropriate it does make available for use the full
range of routines provided presently.

3.1 Initial Value Problems

In general, for non-stiff first-order systems, Runge-Kutta (RK) routines should be used. For the usual
requirement of integrating across a range the appropriate routines are DO2PVF and D02PCF; D02PVF is
a setup routine for DO2PCF. For more complex tasks there are a further five related routines, DO2PDF,
DO02PWF, DO2PXF, DO2PYF and DO2PZF. When a system is to be integrated over a long range or
with relatively high accuracy requirements the variable-order, variable-step Adams codes may be more
efficient. The appropriate routine in this case is DO2CJF. For more complex tasks using an Adams code
there are a further six related routines: D02QFF, D02QGF, D02QXF, D02QWF, D02QYF and D02QZF.

For stiff systems, that is those which usually contain rapidly decaying transient components, the Backward
Differentiation Formula (BDF) variable-order, variable-step codes should be used. The appropriate
routine in this case is DO2EJF. For more complex tasks using a BDF code there are a collection of
routines in the D02M-D02N Subchapter. These routines can treat implicit differential algebraic systems
and contain methods alternative to BDF techniques which may be appropriate in some circumstances.

If users are not sure how to classify a problem, they are advised to perform some preliminary calculations
with DO2PCF, which can indicate whether the system is stiff. We also advise performing some trial
calculations with DO2PCF (RK), D02CJF (Adams) and DO2EJF (BDF) so as to determine which type
of routine is best applied to the problem. The conclusions should be based on the computer time used
and the number of evaluations of the derivative function f;. See Gladwell [6] for more details.

For second-order systems of the special form described in Section 2 the Runge-Kutta-Nystrom (RKN)
routine DO2LAF should be used.

3.1.1 Runge-Kutta routines

The basic RK routine is DO2PDF which takes one integration step at a time. An alternative is DO2PCF
which provides output at user-specified points. The initialisation of either DO2PCF or DO2PDF and the
setting of optional inputs, including choice of method, is made by a call to the setup routine DO2PVF.
Optional output information about the integration and about error assessment, if selected, can be obtained
by calls to the diagnostic routines DO2PYF and DO2PZF respectively. DO02PXF may be used to interpolate
on information produced by DO2PDF to give solution and derivative values between the integration points.
DO02PWTF may be used to reset the end of the integration range whilst integrating using DO2PDF.

There is a simple driving routine DO2BJF which integrates a system over a range and, optionally, computes
intermediate output and/or determines the position where a specified function of the solution is zero.

3.1.2 Adams routines

The general Adams variable-order variable-step routine is DO02QFF which provides a choice of automatic
error control and the option of a sophisticated root-finding technique. Reverse communication for both
the differential equation and root definition function is provided in D02QGF, which otherwise has the
same facilities as DO2QFF. A reverse communication routine makes a return to the calling (sub)program
for evaluations of equations rather than calling a user-supplied procedure. The initialisation of either

[NP3086/18] D02.5

Introduction — D02 D02 - Ordinary Differential Equations

of DO2QFF and D02QGF and the setting of optional inputs is made by a call to the setup routine
D02QWF. Optional output information about the integration and any roots detected can be obtained by
calls to the diagnostic routines DO2QXF and D02QYF respectively. D02QZF may be used to interpolate
on information produced by DO2QFF or D02QGF to give solution and derivative values between the
integration points.

There is a simple driving routine DO2CJF which integrates a system over a range and, optionally, computes
intermediate output and/or determines the position where a specified function of the solution is zero.

3.1.3 BDF routines

General routines for explicit and implicit ordinary differential equations with a wide range of options
for integrator choice and special forms of numerical linear algebra are provided in the D02M-D02N
Subchapter. A separate document describing the use of this subchapter is given immediately before the
routines of the subchapter.

There is a simple driving routine DO2EJF which integrates a system over a range and, optionally, computes
intermediate output and/or determines the position where a specified function of the solution is zero. It
has a specification similar to the Adams routine DO2CJF except that to solve the equations arising in the

BDF method an approximation to the Jacobian (g-y%) is required. This approximation can be calculated

internally but the user may supply an analytic expression. In most cases supplying a correct analytic
expression will reduce the amount of computer time used.

3.1.4 Runge-Kutta—Nystrom routines

The Runge-Kutta-Nystrom routine DO2LAF uses either a low- or high-order method (chosen by the
user). The choice of method and error control and the setting of optional inputs is made by a call to the
setup routine DO2LXF. Optional output information about the integration can be obtained by a call to
the diagnostic routine DO2LYF. When the low-order method has been employed DO2LZF may be used
to interpolate on information produced by DO2LAF to give solution and derivative values between the
integration points.

3.2 Boundary Value Problems

In general, for a nonlinear system of mixed order with separated boundary conditions, the collocation
method (DO2TKF and its associated routines) can be used. Problems of a more general nature can
often be transformed into a suitable form for treatment by DO2TKF, for example nonseparated boundary
conditions or problems with unknown parameters (see Section 8 of DO2TVF for details).

For simple boundary value problems with assigned boundary values the user may prefer to use a code
based on the shooting method or finite difference method for which there are routines with simple calling
sequences (DO2HAF and D02GAF).

For difficult boundary value problems, where the user needs to exercise some control over the calculation,
and where the collocation method proves unsuccessful, the user may wish to try the alternative methods
of shooting (D02SAF) or finite-differences (D02RAF).

Note that it is not possible to make a fully automatic boundary value routine, and the user should be
prepared to experiment with different starting values or a different routine if the problem is at all difficult.

3.2.1 Collocation methods

The collocation routine DO2TKF solves a nonlinear system of mixed order boundary value problems with
separated boundary conditions. The initial mesh and accuracy requirements must be specified by a call to
the setup routine DO2TVF. Optional output information about the final mesh and estimated maximum
error can be obtained by a call to the diagnostic routine DO2TZF. The solution anywhere on the mesh
can be computed by a call to the interpolation routine DO2TYF. If DO2TKF is being used to solve a
sequence of related problems then the continuation routine DO2TXF should also be used.

3.2.2 Shooting methods

DO02HAF may be used for simple boundary value problems, where the unknown parameters are the
missing boundary conditions. More general boundary value problems may be handled by using DO2HBF.

D02.6 [NP3086/18]

D02 - Ordinary Differential Equations Introduction — D02

This routine allows for a generalised parameter structure, and is fairly complicated. The older routine
DO02AGF has been retained for use when an interior matching-point is essential; otherwise the newer
routine DO2HBF should be preferred.

For particularly complicated problems where, for example, the parameters must be constrained or the
range of integration must be split to enable the shooting method to succeed, the recommended routine is
DO02SAF which extends the facilities provided by DO2HBF. DO2SAF permits the sophisticated user much
more control over the calculation than does DO2HBF; in particular the user is permitted precise control
of solution output and intermediate monitoring information.

3.2.3 Finite-difference methods

DO02GAF may be used for simple boundary value problems with assigned boundary values. The calling
sequence of DO2GAF is very similar to that for DO02HAF discussed above.

The user may find that convergence is difficult to achieve using DO02GAF since only specifying the unknown
boundary values and the position of the finite-difference mesh is permitted. In such cases the user may
use DO2RAF which permits specification of an initial estimate for the solution at all mesh points and
allows the calculation to be influenced in other ways too. DO2RAF is designed to solve a general nonlinear
two-point boundary value problem with nonlinear boundary conditions.

A routine, DO2GBF, is also supplied specifically for the general linear two-point boundary value problem
written in a standard ‘textbook’ form.

The user is advised to use interpolation routines from the E01 Chapter to obtain solution values at points
not on the final mesh.

3.3 Chebyshev Collocation Method

DO02TGF may be used to obtain the approximate solution of a system of differential equations in the form
of a Chebyshev series. The routine treats linear differential equations directly, and makes no distinction
between initial value and boundary value problems. This routine is appropriate for problems where it
is known that the solution is smooth and well-behaved over the range, so that each component can be
represented by a single polynomial. Singular problems can be solved using DO2TGF as long as their
polynomial-like solutions are required.

D02TGF permits the differential equations to be specified in higher order form; that is without conversion
to a first-order system. This type of specification leads to a complicated calling sequence. For the
inexperienced user two simpler routines are supplied. DO2JAF solves a single regular linear differential
equation of any order whereas DO2JBF solves a system of regular linear first-order differential equations.

3.4 Eigenvalue Problems

Two routines, DO2KAF and DO2KDF, may be used to find the eigenvalues of second-order Sturm-
Liouville problems. DO02KAF is designed to solve simple problems with regular boundary conditions.
DO2KAF calls DO2KDF which is designed to solve more difficult problems, for example with singular
boundary conditions or on infinite ranges or with discontinuous coefficients.

If the eigenfunctions of the Sturm-Liouville problem are also required, DO2KEF should be used. (DO2KEF
solves the same types of problem as D02KDF.)

[NP3086/18] D02.7

Introduction — D02

3.5 Summary of Recommended Routines

D02 - Ordinary Differential Equations

Problem Routine
R K method Adams method BDF method
Initial-value Problems
Driver Routines
Integration over a range with DO02BJF DO02CJF DO2EJF
optional intermediate output and
optional determination of
position where a function of
the solution becomes zero
Integration over a range
-with intermediate output DO02BJF DO02CJF DO2EJF
-until function of solution becomes zero DO02BJF D02CJF DO2EJF
Comprehensive Integration routines DO02PCF, D02PDF D02QFF, D02QGF D02M routines
DO02PVF, DO2PWF D02QWF, D02QXF DO2N routines
D02PXF, DO2PYF D02QYF, D02QZF DO02XKF, D02XJF
and DO2ZAF

Package for Solving Stiff Equations

D02M-DO02N Subchapter

Package for Solving Second-order
Systems of Special Form

DO2L routines

Boundary-value Problems
Collocation Method, Mixed
Order

Boundary-value Problems
Shooting Method

simple parameter
generalised parameters
additional facilities

Boundary-value Problems
Finite-difference Method
simple parameter

linear problem

full nonlinear problem

Chebyshev Collocation, Linear Problems
single equation

first-order system

general system

Sturm-Liouville Eigenvalue Problems
regular problems

general problems

eigenfunction calculation

DO2TKF, DO2TVF, DO2TXF, DO2TYF, DO2TZF

DO2HAF
DO2HBF, D02AGF
DO02SAF

D02GAF
DO02GBF
DO2RAF

DO2JAF

DO02JBF
DO2TGF

D02KAF
DO02KDF
DO2KEF

D02.8

[NP3086/18]

D02 - Ordinary Differential Equations Introduction - D02

4

Routines Withdrawn or Scheduled for Withdrawal

Since Mark 13 the following routines have been withdrawn. Advice on replacing calls to these routines
is given in the document ‘Advice on Replacement Calls for Withdrawn/Superseded Routines’.

D02BAF D02BBF D02BDF D02CAF D02CBF D02CGF
D02CHF DO2EAF D02EBF D02EGF DO2EHF DO2PAF
D02QAF D02QBF D02QDF D02QQF DO02XAF DO02XBF
D02XGF D02XHF DO2YAF

5 References
[1] Ascher U M, Mattheij R M M and Russell R D (1988) Numerical Solution of Boundary Value

(2]

(3]

(4]

(5]

(6]
[7]

(8]

(]

[10]
(11]

Problems for Ordinary Differential Equations Prentice Hall, Englewood Cliffs, NJ

Ascher U M and Bader G (1987) A new basis implementation for a mixed order boundary value
ODE solver SIAM J. Sci. Stat. Comput. 8 483-500

Ascher U M, Christiansen J and Russell R D (1979) A collocation solver for mixed order systems
of boundary value problems Math. Comput. 33 659-679

Berzins M, Brankin R W and Gladwell I (1988) Design of the stiff integrators in the NAG Library
SIGNUM Newsl. 23 16-23

Gladwell I (1979) The development of the boundary value codes in the ordinary differential equations
chapter of the NAG Library Codes for Boundary Value Problems in Ordinary Differential Equations.
Lecture Notes in Computer Science (ed B Childs, M Scott, J W Daniel, E Denman and P Nelson)
76 Springer-Verlag '

Gladwell I (1979) Initial value routines in the NAG Library ACM Trans. Math. Software 5 386-400

Gladwell 1 (1987) The NAG Library boundary value codes Numerical Analysis Report 134
Manchester University

Gladwell 1 and Sayers D K (ed.) (1980) Computational Techniques for Ordinary Differential
Equations Academic Press

Hall G and Watt J M (ed.) (1976) Modern Numerical Methods for Ordinary Differential Equations
Clarendon Press, Oxford

Keller H B (1992) Numerical Methods for Two-point Boundary-value Problems Dover, New York

Pryce J D (1986) Error estimation for phase-function shooting methods for Sturm-Liouville
problems IMA J. Numer. Anal. 6 103-123

[NP3086,/18] D02.9 (last)

D02 — Ordinary Differential Equations DO2AGF

D02AGF - NAG Fortran Library Routine Document

Note: before using this routine, pleasc read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

DO2AGF solves the two-point boundary-value problem for a system of ordinary differential
equations, using initial value techniques and Newton iteration; it generalizes DO2HAF to include
the case where parameters other than boundary values are to be determined.

Specification
SUBROUTINE DO2AGF (H, ERROR, PARERR, PARAM, C, N, N1, M1, AUX,
1 BCAUX, RAAUX, PRSOL, MAT, COPY, WSPACE, WSPAC1,
2 WSPAC2, IFAIL)
INTEGER N, N1, M1, IFAIL
real H, ERROR(N), PARERR(N1), PARAM(N1), C(M1,N),
1 MAT(N1,N1), COPY(N1,N1), WSPACE(N, 9), WSPAC1(N),
2 WSPAC2(N)
EXTERNAL AUX, BCAUX, RAAUX, PRSOL
Description

The routine solves the two-point boundary-value problem by determining the unknown
parameters p,,p,,...p, of the problem. These parameters may be, but need not be, boundary
values (as they are in DO2HAF); they may include eigenvalue parameters in the coefficients of
the differential equations, length of the range of integration, etc. The notation and methods used
are similar to those of DO2HAF and the user is advised to study this first. (There the parameters
Py:P2sPa, comrespond to the unknown boundary conditions.) It is assumed that we have a

system of n first-order ordinary differential equations of the form:
dy;

-Zx— =f;'(x;)'1»J’2,~--;yn), i = 1,2,...,’1,

and that derivatives f; are evaluated by a subroutine AUX supplied by the user. The system,
including the boundary conditions given by BCAUX, and the range of integration and matching
point, r, given by RAAUX, involves the n, unknown parameters P1P2sP,, Which are to be
determined, and for which initial estimates must be supplied. The number of unknown
parameters n, must not exceed the number of equations n. If n, < n, we assume that (n=n,)
equations of the system are not involved in the matching process. These are usually referred to as
‘driving equations’; they are independent of the parameters and of the solutions of the other n,
equations. In numbering the equations for the subroutine AUX, the driving equations must be put
last.

The estimated values of the parameters are corrected by a form of Newton iteration. The Newton
correction on each iteration is calculated using a matrix whose (i,j)th element depends on the
derivative of the ith component of the solution, y;, with respect to the jth parameter, p ;- This
matrix is calculated by a simple numerical differentiation technique which requires n,
evaluations of the differential system.

References
None.

Parameters
Users are strongly recommended to read Sections 3 and 8 in conjunction with this section.

[NP2136/15) Page 1

D02AGF D02 — Ordinary Differential Equations

1: H-real Input/ Output
On entry: H must be set to an estimate of the step size needed for integration, h.
On exit: the last step length used.

2: ERROR(N) — real array. Input

On entry: ERROR (i) must be set to a small quantity to control the ith solution component.
The element ERROR(i) is used:

(i) in the bound on the local error in the ith component of the solution y; during
integration,

(ii) in the convergence test on the ith component of the solution y, at the matching point
in the Newton iteration.

The elements ERROR (i) should not be chosen too small. They should usually be several
orders of magnitude larger than machine precision.

3: PARERR(N1) - real array. Input

Onentry: PARERR (i) must be set to a small quantity to control the ith parameter
component. The element PARERR (i) is used:

(i) in the convergence test on the ith parameter in the Newton iteration,

(ii) in perturbing the ith parameter when approximating the derivatives of the
components of the solution with respect to the ith parameter, for use in the Newton
iteration.

The elements PARERR (i) should not be chosen too small. They should usually be several
orders of magnitude larger than machine precision.

4: PARAM(N1) - real array. Input/ Output
On entry: PARAM(i) must be set to an estimate for the ith parameter, p;, fori = 1,2,...N1.

On exit: the corrected value for the ith parameter, unless an error has occurred, when it
contains the last calculated value of the parameter (possibly perturbed by
PARERR (i) X (1+|PARAM(i)|) if the error occurred when calculating the approximate
derivatives).

5: C(M1,N) — real array. Output
On exit: the solution when M1 > 1 (see below).
If M1 = 1 then the elements of C are not used.

6: N — INTEGER. Input
On entry: the total number of differential equations, n.

7: NI - INTEGER. Input
On entry: the number of parameters, n,.

If N1 < N, the last N — N1 differential equations (in the subroutine AUX below) are
driving equations (see Section 3).

Constraint: N1 £ N.

8: M1l - INTEGER. Input
On entry: determines whether or not the final solution is computed as well as the parameter
values. For
Ml =1

the final solution is not calculated;

Page 2 [NP2136/15]

D02 — Ordinary Differential Equations DO02AGF

Ml >1

the final values of the solution at interval (length of range)/(M1-1) are calculated
and stored sequentially in the array C starting with the values of y, evaluated at the
first end-point (see subroutine RAAUX below) stored in C(1,i).

9: AUX - SUBROUTINE, supplied by the user. External Procedure

AUX must evaluate the functions f; (i.e. the derivatives y;) for given values of its
arguments, X,y,,....Y s Pys--iPa,
Its specification is:

SUBROUTINE AUX(F, Y, X, PARAM)

real F(n), ¥(n), X, PARAM(nl)

where n and nl are the numerical values of N and N1 in the call of DO2AGF.

1: F(n) - real array. Output
On exit: the value of f;, fori = 1,2,...,n.

22 Y(n) - real array. Input
On entry: the value of the argument y,, fori = 1,2,...,n.

3: X —real Input
On entry: the value of the argument x.

4. PARAM(nl) - real array. Input

On entry: the value of the argument p,, fori = 1,2,...,n,.

AUX must be declared as EXTERNAL in the (sub)program from which DO2AGEF is called.
Parameters denoted as Input must not be changed by this procedure.

10: BCAUX - SUBROUTINE, supplied by the user. External Procedure

[NP2136/15]

BCAUX must evaluate the values of y; at the end-points of the range given the values of
PisiPn, -
Its specification is:

SUBROUTINE BCAUX(GO, G1, PARAM)

real GO(n), G1(n), PARAM(nl)

where n and nl are the numerical values of N and N1 in the call of DO2AGF.

1: GO(n) — real array. Output
On exit: the values y;, for i = 1,2,...,n, at the boundary point x, (see RAAUX
below).

2: G1(n) - real array. Output
On exit: the values y;, for i = 1,2,...,n, at the boundary point x, (see RAAUX
below).

3: PARAM(nl) - real array. Input

On entry: the value of the argument p,, for i = 1,2,...,n.

BCAUX must be declared as EXTERNAL in the (sub)program from which DO2AGF is
called. Parameters denoted as Inpur must not be changed by this procedure.

Page 3

D02AGF

D02 - Ordinary Differential Equations

11: RAAUX — SUBROUTINE, supplied by the user. External Procedure
RAAUX must evaluate the end-points, x, and x,, of the range and the matching point, r,
given the values p,.,p,,...p, .

Its specification is:
SUBROUTINE RAAUX(X0, X1, R, PARAM)
real X0, X1, R, PARAM(nl)
where nl is the numerical value of N1 in the call of DO2AGF.
I: X0 - real. Output
On exit: must contain the left-hand end of the range, x,,.
2: X1 —real. Output
On exit: must contain the right-hand end of the range x,.
3: R -—real Output
On exit: must contain the matching point, r.
4: PARAM(nl) — real array. Input
On entry:. the value of the argument p,, for i = 1,2,...,n,.
RAAUX must be declared as EXTERNAL in the (sub)program from which DO2AGF is
called. Parameters denoted as /nput must not be changed by this procedure.

12: PRSOL — SUBROUTINE, supplied by the user. External Procedure
PRSOL is called at each iteration of the Newton method and can be used to print the current
values of the parameters p;, fori = 1,2,...,n,, their errors, e;, and the sum of squares of the
errors at the matching point, r.

Its specification is:
SUBROUTINE PRSOL(PARAM, RES, N1, ERR)
INTEGER N1
real PARAM(N1), RES, ERR(N1)
1: PARAM(N1) — real array. Input
On entry: the current value of the parameters p,, for i = 1,2,...,n,.
2: RES - real. Input
ny
On entry: the sum of squares of the errors in the parameters, Y e7.
i=1
3: N1 - INTEGER. Input
On entry. the number of parameters, n,.
4: ERR(NI1) - real array. Input
On entry: the errors in the parameters, e;, for i = 1,2,...,n,.
PRSOL must be declared as EXTERNAL in the (sub)program from which DO2AGF is
called. Parameters denoted as Input must not be changed by this procedure.

13: MAT(N1,N1) — real array. Workspace

14: COPY(N1,N1) - real array. Workspace

15: WSPACE(N,9) — real array. Workspace

16: WSPAC1(N) — real array. Workspace

17: ' WSPAC2(N) - real array. Workspace

Page 4 [NP2136/15]

D02 - Ordinary Differential Equations D02AGF

} 18 IFAIL - INTEGER. Input/ Output

o

Onentry. IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter P0O1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:
IFAIL =1

This indicates that N1 > N on entry, that is the number of parameters is greater than the
number of differential equations.

IFAIL = 2

As for IFAIL = 4 (below) except that the integration failed while calculating the matrix
for use in the Newton iteration.

IFAIL = 3

The current matching point » does not lie between the current end-points x, and x,. If the
values x,, x; and r depend on the parameters p;, this may occur at any time in the Newton
iteration if care is not taken to avoid it when coding subroutine RAAUX.

IFAIL = 4

The step length for integration H has halved more than 13 times (or too many steps were
needed to reach the end of the range of integration) in attempting to control the local
truncation error whilst integrating to obtain the solution corresponding to the current values
p.:- If, on failure, H has the sign of r — x, then failure has occurred whilst integrating from
X, to r, otherwise it has occurred whilst integrating from x, to r.

TFAIL = 5

The matrix of the equations to be solved for corrections to the variable parameters in the
Newton method is singular (as determined by FO3AFF).

IFAIL = 6

A satisfactory correction to the parameters was not obtained on the last Newton iteration
employed. A Newton iteration is deemed to be unsatisfactory if the sum of the squares of
the residuals (which can be printed using PRSOL) has not been reduced after three
iterations using a new Newton correction.

IFAIL = 7
Convergence has not been obtained after 12 satisfactory iterations of the Newton method.

A further discussion of these errors and the steps which might be taken to correct them is given
in Section 8.

Accuracy

If the process converges, the accuracy to which the unknown parameters are determined is
usually close to that specified by the user; and the solution, if requested, is usually determined to
the accuracy specified.

[NP2834117] Page 5

D02AGF D02 - Ordinary Differential Equations

Page 6

Further Comments

The time taken by the routine depends on the complexity of the system, and on the number of
iterations required. In practice, integration of the differential equations is by far the most costly
process involved.

There may be particular difficulty in mtegrating the differential equations in one direction
(indicated by IFAIL = 2 or 4). The value of » should be adjusted to avoid such difficulties.

If the matching point 7 is at one of the end-points x, or x, and some of the parameters are used
only to determine the boundary values at this point, then good initial estimates for these
parameters are not required, since they are completely determined by the routine (for example,
see p, in example (i) of Section 9).

Wherever they occur in the procedure, the error parameters contained in the arrays ERROR and
PARERR are used in ‘mixed’ form; that is ERROR (/) always occurs in expressions of the form
ERROR(/)X(1+|y;|), and PARERR(/) always occurs in expressions of the form
PARERR (i) X (1+|p,|) . Though not ideal for every application, it is expected that this mixture of
absolute and relative error testing will be adequate for most purposes.

Note that convergence is not guaranteed. The user is strongly advised to provide an output
subroutine PRSOL, as shown in the example (i) of Section 9, in order to monitor the progress of
the iteration. Failure of the Newton iteration to converge (IFAIL = 6 or IFAIL = 7) usually
results from poor starting approximations to the parameters, though occasionally such failures
occur because the elements of one or both of the arrays PARERR or ERROR are too small. (It
should be possible to distinguish these cases by studying the output from PRSOL.) Poor starting
approximations can also result in the failure described under IFAIL = 4 and IFAIL = 5 in
Section 6 (especially if these errors occur after some Newton iterations have been completed,
that is, after two or more calls of PRSOL). More frequently, a singular matrix in the Newton
method (monitored as IFAIL = 5) occurs because the mathematical problem has been posed
incorrectly. The case IFAIL = 4 usually occurs because 4 or r has been poorly estimated, so
these values should be checked first. If IFAIL = 2 is monitored, the solution y,,y,,....y, is
sensitive to perturbations in the parameters p,. Reduce the size of one or more values
PARERR(7) to reduce the perturbations. Since only one value p; is perturbed at any time when
forming the matrix, the perturbation which is too large can be located by studying the final output
from PRSOL and the values of the parameters returned by DO2AGF. If this change leads to other
types of failure improve the initial values of p, by other means.

The computing time for integrating the differential equations can sometimes depend critically on
the quality of the initial estimates for the parameters p ;. If it seems that too much computing time
is required and, in particular, if the values ERR (i) (available on each call of PRSOL) are much
larger than the expected values of the solution at the matching point #, then the coding of the
subroutines AUX, BCAUX and RAAUX should be checked for errors. If no errors can be found,
an independent attempt should be made to improve the initial estimates for PARAM (/).

The subroutine can be used to solve a very wide range of problems, for example:

(a) eigenvalue problems, including problems where the eigenvalue occurs in the boundary
conditions;

(b) problems where the differential equations depend on some parameters which are to be
determined so as to satisfy certain boundary conditions (see example (ii) in Section 9);

(c) problems where one of the end-points of the range of integration is to be determined as the
point where a variable y; takes a particular value (see (ii) in Section 9);

(d) singular problems and problems on infinite ranges of integration where the values of the
solution at x, or x, or both are determined by a power series or an asymptotic expansion (or
a more complicated expression) and where some of the coefficients in the expression are to
be determined (see example (i) in Section 9); and

(e) differential equations with certain terms defined by other independent (driving) differential
equations.

[NP2834117)

DO2 - Ordinary Differential Equations D02AGF

9. Example

For this routine two examples are presented, in Sections 9.1 and 9.2. In the example programs
distributed to sites, there is a single example program for DO2AGF, with a main program:

* DO2AGF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. External Subroutines
EXTERNAL EX1, EX2
* .. Executable Statements ..
WRITE (NOUT,*) ‘DO2AGF Example Program Results’
CALL EX1
CALL EX2
STOP
END

The code to solve the two example problems is given in the subroutines EX1 and EX2, in
Sections 9.1.1 and 9.2.1 respectively.

9.1. Example 1
To find the solution of the differential equation
3 ’
"o y =y
YR
on the range 0 < x < 16, with boundary conditions y(0) = 0.1 and y(16) = 1/6.

We cannot use the differential equation at x = 0 because it is singular, so we take the truncated
series expansion
YV | x

1
Yx) =15 +*Pi19 T 100

near the origin (which is correct to the number of terms given in this case). Where p, is one of
the parameters to be determined. We choose the range as [0.1,16] and setting p, = y'(16), we
can determine all the boundary conditions. We take the matching point to be 16, the end of the
range, and 50 a good initial guess for p, is not necessary. We write y = Y(1),y" = Y(2), and
estimate p, = PARAM(1) = 0.2, p, = PARAM(2) = 0.0.

9.1.1. Program text
SUBROUTINE EX1

* .. Parameters .
INTEGER N, M1
PARAMETER (N=2,M1=6)
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalars in Common ..
INTEGER IPRINT
* .. Local Scalars
real DUM, H, R, X, X1
INTEGER I, IFAIL, J, N1
* .. Local Arrays ..
real C(M1,N), COPY(N,N), ERROR(N), G(N), GIl(N),
+ MAT(N,N), PARAM(N), PARERR(N), WSPACE(N,9)
* .. External Subroutines ..
EXTERNAL AUX1, BCAUX1l, DO2AGF, PRSOL, RNAUX1l
* .. Intrinsic Functions
INTRINSIC real
* .. Common blocks ..
COMMON /BLOCK1/IPRINT

[NP2136/15] Page 7

D02AGF D02 — Ordinary Differential Equations

* .. Executable Statements ..
WRITE (NOUT, *)
WRITE (NOUT, *)
WRITE (NOUT,*) ’Case 1’
WRITE (NOUT, *)

* * Set IPRINT to 1 to obtain output from PRSOL at each iteration *
IPRINT = 0
PARAM(1) = 0.2e0
PARAM(2) = 0.0e0
Nl = 2
H = 0.1le0

PARERR(1) = 1.0e-5
PARERR(2) = 1.0e-3

ERROR(1) = 1.0e-4
ERROR(2) = 1.0e-4
IFAIL = 1

CALL DO2AGF (H, ERROR, PARERR, PARAM, C, N, N1,M1,AUX1, BCAUX1, RNAUX1,
+ PRSOL,MAT, COPY, WSPACE, G, G1, IFAIL)

IF (IFAIL.EQ.0) THEN
WRITE (NOUT,*) ’'Final parameters’
WRITE (NOUT,99998) (PARAM(I),I=1,N1)
WRITE (NOUT, *)
WRITE (NOUT,*) ’'Final solution’
WRITE (NOUT,*) ’X-value Components of solution’
CALL RNAUX1(X,X1l,R,PARAM)
H = (X1-X)/5.0e0
DO 20 I =1, 6
DUM = X + real(I-1)x*H
WRITE (NOUT,99997) DUM, (C(I,J),J=1,N)
20 CONTINUE
ELSE
WRITE (NOUT,99999) ’'IFAIL = ’, IFAIL
END IF
RETURN

99999 FORMAT (1X,A,I3)

99998 FORMAT (1X,3el6.6)

99997 FORMAT (1X,F7.2,3el3.4)
END

SUBROUTINE AUX1l(F,Y,X,PARAM)
* .. Scalar Arguments ..
real X
* .. Array Arguments ..
real F(2), PARAM(2), Y(2)
* .. Executable Statements ..
F(l) = Y(2)
F(2) = (Y(1)**3-Y(2))/(2.0e0*X)
RETURN
END

SUBROUTINE RNAUX1(X,X1,R,PARAM)
* .. Scalar Arguments ..

real R, X, X1
* .. Array Arguments ..

real PARAM(2)
* .. Executable Statements ..

X = 0.1e0

X1l = 16.0e0

R = 16.0e0

RETURN

END

Page 8 [NP2136/15}

D02 — Ordinary Differential Equations

SUBROUTINE BCAUX1(G,Gl, PARAM)
.. Array Arguments ..

real G(2), G1(2), PARAM(2)
* .. Local Scalars

real z
* .. Intrinsic Functions ..

INTRINSIC SQRT
* .. Executable Statements

Z = 0.1le0

G(1) = 0.1e0 + PARAM(1)*SQRT(Z)*0.1e0 + 0.01e0*Z
G(2) = PARAM(1)*0.05e0/SQRT(Z) + 0.01le0

Gl(1) = 1.0e0/6.0e0

G1(2) = PARAM(2)

RETURN
END
*
SUBROUTINE PRSOL(PARAM, RESID,N1, ERR)
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalar Arguments .
real RESID
INTEGER N1
* .. Array Arguments ..
real ERR(N1), PARAM(N1)
* .. Scalars in Common ..
INTEGER IPRINT
* .. Local Scalars
INTEGER I
* .. Common blocks ..
COMMON /BLOCK1/IPRINT
* .. Executable Statements ..

IF (IPRINT.NE.O) THEN

D02AGF

WRITE (NOUT, 99999) ’Current parameters r, (PARAM(I),I=1,N1)

WRITE (NOUT, 99998) ’'Residuals ’, (ERR(I),I=1,N1)
WRITE (NOUT,99998) ’Sum of residuals squared ', RESID
WRITE (NOUT, %)

END IF

RETURN

99999 FORMAT (1X,A,6(el4.6,2X))

99998 FORMAT (1X,A,6(el2.4,1X))
END

9.1.2. Program data
None.

9.1.3. Program results
DO2AGF Example Program Results

Case 1

Final parameters
0.464269E-01 0.349429E-02

Final solution
X-value Components of solution

0.10 0.1025E+00 0.1734E-01
3.28 0.1217E+00 0.4180E-02
6.46 0.1338E+00 0.3576E-02
9.64 0.1449E+00 0.3418E-02
12.82 0.1557E+00 0.3414E-02
16.00 0.1667E+00 0.3494E-02

[NP2136/15]

Page 9

D02AGF

D02 - Ordinary Differential Equations

With IPRINT set to 1 in the example program, monitoring information similar to that below is

obtained:
Current parameters 0
Residuals -0.8426E-01

Sum of residuals squared

Current parameters 0
Residuals -0.5802E-02
Sum of residuals squared

Current parameters 0
Residuals -0.7841E-03
Sum of residuals squared

Current parameters 0
Residuals -0.1092E-03
Sum of residuals squared

Current parameters 0
Residuals -0.1526E-04
Sum of residuals squared

Current parameters 0

Residuals -0.2135E-05
Sum of residuals squared

9.2 Example 2

.200000E+00
—-0.8408E-02
0.7171E-02

0.000000E+00

.577582E-01
-0.1005E-02
0.3467E-04

0.278452E-02

.479643E-01
-0.1313E-03
0.6321E-06

0.340256E-02

.466406E-01
-0.1825E-04
0.1225E-07

0.348158E-02

.464562E-01
-0.2551E-05
0.2395E-09

0.349254E-02

.464305E-01
-0.3568E-06
0.4685E-11

0.349407E-02

To find the gravitational constant p, and the range p, over which a projectile must be fired to hit
the target with a given velocity. The differential equations are

Yy =tan¢

, _ —(p;sin ¢ + 0.00002v?)
V.= vcos ¢

v P

¢ 2

on the range 0 < x < p, with boundary conditions

y=0, v=500, ¢=05 at x=0

y=0, v=450, ¢=p; at x=p,.
We write y = Y(1), v = Y(2), ¢ = Y(3), and we take the matching point r = p,. We
estimate p, = PARAM(1) = 32, p, = PARAM(2) = 6000 and p, = PARAM(3) = 0.54
(though this estimate is not important).

9.2.1. Program text

Page 10

SUBROUTINE EX2

* .. Parameters
INTEGER N, Ml
PARAMETER (N=3,M1=6)
INTEGER NOUT
PARAMETER (NOUT=6)
* Scalars in Common ..
INTEGER IPRINT
* . Local Scalars
real DUM, H, R, X, X1
INTEGER I, IFAIL, J
* .. Local Arrays
real C(M1,N), COPY(N,N), ERROR(N), G(N), G1(N),
+ MAT(N,N), PARAM(N), PARERR(N), WSPACE(N,9)

External Subroutines ..
EXTERNAL AUXZ2, BCAUX2, DO2AGF,
.. Intrinsic Functions
INTRINSIC real

PRSOL, RNAUX2

[NP2136/15)

D02 - Ordinary Differential Equations DO02AGF

* .. Common blocks
COMMON /BLOCK1/IPRINT
* .. Executable Statements ..

WRITE (NOUT, *)
WRITE (NOUT, *)
WRITE (NOUT,*) ’‘Case 2’
WRITE (NOUT, *)

* Set IPRINT to 1 to obtain output from PRSOL at each iteration *

IPRINT = O

H = 10.0e0

PARAM(1) = 32.0e0
PARAM(2) = 6000.0e0
PARAM(3) = 0.54e0
PARERR(1l) = 1.0e-5
PARERR(2) = 1.0e-4
PARERR(3) = 1.0e-4
ERROR(1) = 1.0e-2
ERROR(2) = 1.0e-2
ERROR(3) = 1.0e-2
IFAIL = 1

CALL DO2AGF (H, ERROR, PARERR, PARAM, C, N, N, M1, AUX2, BCAUX2, RNAUX2,
+ PRSOL,MAT, COPY, WSPACE, G, G1, IFAIL)

IF (IFAIL.EQ.0) THEN
WRITE (NOUT,*) ’‘Final parameters’
WRITE (NOUT,99998) (PARAM(I),I=1,N)
WRITE (NOUT, *)
WRITE (NOUT,*) ’‘Final solution’
WRITE (NOUT,*) ’'X-value Components of solution’
CALL RNAUX2(X,X1,R,PARAM)
H = (X1-X)/5.0e0
DO 20I =1, 6
DUM = X + real(I-1)*H
WRITE (NOUT,99997) DUM, (C(I,J),J=1,N)
20 CONTINUE
ELSE
WRITE (NOUT,99999) ’'IFAIL = ’, IFAIL
END IF
RETURN

99999 FORMAT (1X,A,I3)
99998 FORMAT (1X,3el6.6)
99997 FORMAT (1X,F7.0,3el3.4)

END
*
SUBROUTINE AUX2(F,Y,X,PARAM)
* .. Scalar Arguments ..
real X
* .. Array Arguments ..
real F(3), PARAM(3), Y(3)
* .. Local Scalars ..
real C, S
* .. Intrinsic Functions
INTRINSIC COS, SIN
* .. Executable Statements

C = COS(Y(3))
S = SIN(Y(3))

F(1) = 8/C

F(2) = —(PARAM(1)*S+0.00002e0*Y(2)*Y(2))/(¥(2)*C)
F(3) = —PARAM(1)/(Y(2)*¥(2))

RETURN

END

[NP2136/15] Page 11

D02AGF D02 - Ordinary Differential Equations

SUBROUTINE RNAUX2(X,X1,R,PARAM)

* .. Scalar Arguments .

real R, X, X1
* .. Array Arguments ..

real PARAM(3)
* .. Executable Statements

X = 0.0e0

X1 = PARAM(2)
R = PARAM(2)

RETURN

END
*

SUBROUTINE BCAUX2(G,Gl,PARAM)
* .. Array Arguments ..

real G(3), G1(3), PARAM(3)
* .. Executable Statements

G(1l) = 0.0e0

G(2) = 500.0e0
G(3) = 0.5e0
Gl(l) = 0.0e0
Gl(2) = 450.0e0
Gl(3) = PARAM(3)
RETURN

END

SUBROUTINE PRSOL(PARAM,RESID,N1,ERR)

* .. Parameters
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalar Arguments ..
real RESID
INTEGER N1
* .. Array Arguments ..
real ERR(N1), PARAM(N1)
* .. Scalars in Common ..
INTEGER IPRINT
* .. Local Scalars
INTEGER I
* .. Common blocks ..
COMMON /BLOCK1/IPRINT
* .. Executable Statements

IF (IPRINT.NE.O) THEN
WRITE (NOUT,99999) ’‘Current parameters *, (PARAM(I),I=1,N1)
WRITE (NOUT,99998) ’‘Residuals ’, (ERR(I),I=1,N1)
WRITE (NOUT,99998) ’'Sum of residuals squared ‘, RESID
WRITE (NOUT, *)
END IF
RETURN

99999 FORMAT (1X,A,6(eld.6,2X))

99998 FORMAT (1X,A,6(el2.4,1X))
END

9.2.2. Program data
None.

Page 12 [NP2136/15)

DO2 - Ordinary Differential Equations

9.2.3. Program results

Case 2

Final parameters
0.323729E+02

Final solution

X-value
0.
1193.
2385.
3578.
4771.
5963.

[eNoNoNoNeNo)

Components of solution
.0000E+00
.5298E+03
.8076E+03
.8208E+03
.5563E+03
.0000E+00

0.596317E+04

0.
.4516E+03
.4203E+03
.4094E+03
.4200E+03
.4500E+03

[eNeoNoNoNa)

5000E+03

-0.535231E+00

0.5000E+00
0.3281E+00
0.1231E+00
-0.1032E+00
-0.3296E+00
-0.5352E+00

D02AGF

[NP2136/15]

Page 13 (last)

D02 - Ordinary Differential Equations D02BGF

D02BGF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised tcrms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

DO02BGF integrates a system of first-order ordinary differential equations over an interval with
suitable initial conditions, using a Runge-Kutta-Merson method, until a specified component
attains a given value.

Specification
SUBROUTINE DO2BGF (X, XEND, N, Y, TOL, HMAX, M, VAL, FCN, W, IFAIL)
INTEGER N, M, IFAIL
real X, XEND, Y(N), TOL, HMAX, VAL, W(N,10)
EXTERNAL FCN
Description

The routine advances the solution of a system of ordinary differential equations
Yi' = [i(xy1Y20aYa)s i=12,..n,

from x = X towards x = XEND using a Merson form of the Runge-Kutta method. The system
is defined by a subroutine FCN supplied by the user, which evaluates f; in terms of x and
Y1:Yas--Y, (s€€ Section 5), and the values of y,,y,,....y, must be given at x = X.

As the integration proceeds, a check is made on the specified component y,, of the solution to
determine an interval where it attains a given value . The position where this value is attained
is then determined accurately by interpolation on the solution and its derivative. It is assumed
that the solution of y,, = a can be determined by searching for a change in sign in the function

Ym—0

The accuracy of the integration and, indirectly, of the determination of the position where
Y. = «is controlled by the parameter TOL.

For a description of Runge-Kutta methods and their practical implementation see Hall and Watt
(11

References

[1] HALL, G. and WATT, J.M. (eds.)
Modem Numerical Methods for Ordinary Differential Equations.
Clarendon Press, Oxford, p. 59, 1976.

Parameters
X — real. Input/ Output
On entry: X must be set to the initial value of the independent variable x.

On exit: the point where the component y,, attains the value ¢ unless an error has occurred,
when it contains the value of x at the error. In particular, if y,, # o anywhere on the range
x = X to x = XEND, it will contain XEND on exit.

XEND - real. Input
On entry: the final value of the independent variable x.
If XEND < X on entry integration will proceed in the negative direction.

N — INTEGER. Input
On entry: the number of differential equations, n.
Constraint: N > 0.

[NP1692/14) Page 1

D02BGF D02 - Ordinary Differential Equations

42 Y(N) — real array. Input/ Output
On entry: the initial values of the solution y,,y,,...,y,,.

On exit: the computed values of the solution at a point near the solution X, unless an error
has occurred when they contain the computed values at the final value of X.

5: TOL - real. Input/ Output

On entry: TOL must be set to a positive tolerance for controlling the error in the integration
and in the determination of the position where y,, = a.

DO02BGF has been designed so that, for most problems, a reduction in TOL leads to an
approximately proportional reduction in the error in the solution obtained in the integration.
The relation between changes in TOL and the error in the determination of the position
where y,, = a is less clear, but for TOL small enough the error should be approximately
proportional to TOL. However, the actual relation between TOL and the accuracy cannot be
guaranteed. The user is strongly recommended to call DO2BGF with more than one value
for TOL and to compare the results obtained to estimate their accuracy. In the absence of
any prior knowledge the user might compare results obtained by calling DO2BGF with
TOL = 10.07 and TOL = 10.07! if p correct decimal digits in the solution are required.

Constraint: TOL > 0.0.

On exit: normally unchanged. However if the range from X to the position where y, = «
(or to the final value of X if an error occurs) is so short that a small change in TOL is
unlikely to make any change in the computed solution then, on return, TOL has its sign
changed. To check results returned with TOL < 0.0, DO2BGF should be called again with
a positive value of TOL whose magnitude is considerably smaller than that of the previous
call.

6: HMAX - real. Input
On entry: controls how the sign of y,, —a is checked.
If HMAX = 0.0, y,,—« is checked at every internal integration step.

If HMAX # 0.0, the computed solution is checked for a change in sign of y,,— at steps of
not greater than ABS(HMAX). This facility should be used if there is any chance of
‘missing’ the change in sign by checking too infrequently. For example, if two changes of
sign of y,,—a are expected within a distance h, say, of each other then a suitable value for
HMAX might be HMAX = A/2. If only one change of sign in y,,—« is expected on the
range X to XEND then HMAX = 0.0 is most appropriate.

7. M - INTEGER. Input
On entry: the index m of the component of the solution whose value is to be checked.
Constraint: 1 < M < N.

8: VAL - real. Input
On entry: the value of « in the equation y,, = « to be solved for X.

9: FCN — SUBROUTINE, supplied by the user. External Procedure

FCN must evaluate the functions f; (i.e. the derivatives y;) for given values of its
arguments x,y,,...,y,.

Its specification is:

SUBROUTINE FCN(X, Y, F)
real X, ¥(n), F(n)

where n is the actual value of N in the call of DO2BGF.

Page 2 [NP1692/14)

D02 - Ordinary Differential Equations D02BGF

10:

11:

1: X -real Input
On entry: the value of the argument x.

2: Y(n) - real array. Input
On entry: the value of the argument y,, fori = 1L2...,n.

3: F(n) - real array. Output
On exit: the value of f,, fori = 1,2...,n.

FCN must be declared as EXTERNAL in the (sub)program from which DO2BGF is called.
Parameters denoted as Input must not be changed by this procedure.

W(N,10) - real array. Workspace

IFAIL - INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

IFAIL = 1
On entry, TOL < 0.0,
or N €0,
or M <0,
or M > N.
IFAIL = 2

With the given value of TOL, no further progress can be made across the integration range
from the current point x = X, or dependence of the error on TOL would be lost if further
progress across the integration range were attempted (see Section 8 for a discussion of this
error exit). The components Y(1),Y(2),..,Y(n) contain the computed values of the
solution at the current point x = X. No point at which y,, —a changes sign has been located
up to the pointx = X.

IFAIL = 3
TOL is too small for the routine to take an initial step (see Section 8). X and
Y (1),Y(2),...,Y (n) retain their initial values.

[FAIL = 4
At no point in the range X to XEND did the function v, —a change sign. It is assumed that

¥,,—& has no solution.

IFAIL = 5
A serious error has occurred in an intemal call to CO5AZF. Check all subroutine calls and
array dimensions. Seek expert help.

IFAIL = 6
A serious error has occurred in an internal call to an integration routine. Check all
subroutine calls and array dimensions. Seek expert help.

IFAIL = 7

A serious error has occurred in an internal call to an interpolation routine. Check all
subroutine calls and array dimensions. Seek expert help.

[NP2834117) Page 3

D02BGF D02 - Ordinary Differential Equations

Page 4

Accuracy

The accuracy depends on TOL, on the mathematical properties of the differential system, on the
position where y, = a and on the method. It can be controlled by varying TOL but the
approximate proportionality of the error to TOL holds only for a restricted range of values of
TOL. For TOL too large, the underlying theory may break down and the result of varying TOL
may be unpredictable. For TOL too small, rounding error may affect the solution significantly
and an error exit with IFAIL = 2 or I[FAIL = 3 is possible.

Further Comments

The time taken by the routine depends on the complexity and mathematical properties of the
system of differential equations defined by FCN, on the range, the position of solution and the
tolerance. There is also an overhead of the form a + bxn where a and b are machine-dependent
computing times.

For some problems it is possible that DO2BGF will exit with IFAIL = 4 due to inaccuracy of the
computed value y,,. For example, consider a case where the component V., has a maximum in the
integration range and « is close to the maximum value. If TOL is too large, it is possible that the
maximum might be estimated as less than &, or even that the integration step length chosen might
be so long that the maximum of y,, and the (two) positions where y, = a are all in the same
step and so the position where y, = a remains undetected. Both these difficulties can be
overcome by reducing TOL sufficiently and, if necessary, by choosing HMAX sufficiently small.
For similar reasons, care should be taken when choosing XEND. If possible, the user should
choose XEND well beyond the point where y,, is expected to equal a, for example | XEND-X|
should be made about 50% longer than the expected range. As a simple check, if, with XEND
fixed, a change in TOL does not lead to a significant change in Y at XEND, then inaccuracy is
not a likely source of error.

If the routine fails with IFAIL = 3, then it could be called again with a larger value of TOL if
this has not already been tried. If the accuracy requested is really needed and cannot be obtained
with this routine, the system may be very stiff (see below) or so badly scaled that it cannot be
solved to the required accuracy.

If the routine fails with IFAIL = 2, it is likely that it has been called with a value of TOL which
is so small that a solution cannot be obtained on the range X to XEND. This can happen for
well-behaved systems and very small values of TOL. The user should, however, consider
whether there is a more fundamental difficulty. For example:

(a) in the region of a singularity (infinite value) of the solution, the routine will usually stop
with IFAIL = 2, unless overflow occurs first. If overflow occurs using DO2BGF, routine
DO2PDF can be used instead to detect the increasing solution before overflow occurs. In any
case, numerical integration cannot be continued through a singularity, and analytical
treatment should be considered;

(b) for ‘stiff” equations, where the solution contains rapidly decaying components the routine
will use very small steps in x (internally to DO2BGF) to preserve stability. This will usually
exhibit itself by making the computing time excessively long, or occasionally by an exit
with IFAIL = 2. Merson’s method is not efficient in such cases, and the user should try the
method DOZEJF which uses a Backward Differentiation Formula. To determine whether a
problem is stiff, DO2PCF may be used.

For well-behaved systems with no difficulties such as stiffness or singularities, the Merson
method should work well for low accuracy calculations (three or four figures). For high
accuracy calculations or where FCN is costly to evaluate, Merson’s method may not be
appropriate and a computationally less expensive method may be DO2CJF which uses an Adams
method.

(NP2834117)

D02 - Ordinary Differential Equations D02BGF

9.1.

For problems for which DO2BGF is not sufficiently general, the user should consider the routines
DO02PDF and D02BHF. Routine DO2BHF can be used to solve an equation involving the
components y,,V,,....v, and their derivatives (for example, to find where a component passes
through zero or to find the maximum value of a component). It also permits a more general form
of error control and may be preferred to DO2BGF if the component whose value is to be
determined is very small in modulus on the integration range. DO2BHF can always be used in
place of DO2BGF, but will usually be computationally more expensive for solving the same
problem. DO2PDF is a more general routine with many facilities including a more general error
control criteron. DO2PDF can be combined with the root-finder COSAZF and the interpolation
routine DO2PXF to solve equations involving y,,V,,...,y, and their derivatives.

This routine is only intended to be used to locate the first zero of the function y, —a. If later
zeros are required users are strongly advised to construct their own more general root finding
routines as discussed above.

Example
To find the value X > 0.0 where y = 0.0, where y, v, ¢, are defined by
V' = tan ¢
)= -0.032tan ¢ 0.02v
v cos ¢
¢ = -—0.(2)32
v

and where at X = 0.0 we are given y = 0.5, v = 0.5 and ¢ = /5. We write y = Y(1),
v = Y(2) and ¢ = Y(3) and we set TOL = 1.0E-4 and TOL = 1.0E-5 in tumn so that we can
compare the solutions obtained. We expect the solution X = 7.3 and we set XEND = 10.0 so
that the point where y = 0.0 is not too near the end of the range of integration. The value of x
is obtained by using X01AAF. '

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO2BGF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters
INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER N, M
PARAMETER (N=3,M=1)
* .. Local Scalars ..
real HMAX, PI, TOL, VAL, X, XEND
INTEGER I, IFAIL
* .. Local Arrays ..
real W(N,10), Y(N)
* .. External Functions ..
real X01AAF
EXTERNAL X01AAF
* .. External Subroutines ..
EXTERNAL D02BGF, FCN
* .. Executable Statements ..

WRITE (NOUT,*) ’DO2BGF Example Program Results’
XEND = 10.0e0
HMAX = 0.0e0
VAL = 0.0e0
PI = X01AAF(X)
DO 20 I = 4, 5
TOL = 10.0e0**(-I)
WRITE (NOUT,*)
WRITE (NOUT,99999) ‘Calculation with TOL =/, TOL

[NP2834117) Page 5

D02BGF

9.2.

9.3.

X = 0.0e0

Y(1) = 0.5€0
Y(2) = 0.5e0
Y(3) = PI/5.0e0
IFAIL = 0

CALL DO2BGF(X,XEND,N,Y,TOL,HMAX,M, VAL, FCN,W, IFAIL)

WRITE (NOUT,99998) / Y(M) changes sign at X = /, X
IF (TOL.LT.0.0e0) WRITE (NOUT, *)
+ / Over one-third steps controlled by HMAX~
20 CONTINUE
STOP
*
99999 FORMAT (1X,A,e8.1)
99998 FORMAT (1X,A,F7.4)

END
*
SUBROUTINE FCN(T,Y,F)
* .. Parameters
INTEGER N
PARAMETER (N=3)
* .. Scalar Arguments ..
real T
* .. Array Arguments ..
real F(N), Y(N)
* .. Intrinsic Functions ..
INTRINSIC C0OS, TAN
* .. Executable Statements
F(1) = TAN(Y(3))

F(2) = -0.032e0*xTAN(Y(3))/¥Y(2) - 0.02e0%xY(2)/COS(¥Y(3))
F(3) = -0.032e0/Y(2)**2

RETURN

END

Program Data

“None.

Program Results
DO2BGF Example Program Results

Calculation with TOL = 0.1E-03
Y(M) changes sign at X = 7.2884

Calculation with TOL = 0.1E-04
Y(M) changes sign at X = 7.2883

D02 - Ordinary Differential Equations

Page 6 (last)

[NP2834117)

D02 - Ordinary Differential Equations D02BHF

DO02BHF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

DO2BHF integrates a system of first-order ordinary differential equations over an interval with
suitable initial conditions, using a Runge-Kutta-Merson method, until a user-specified function of
the solution is zero.

Specification
SUBROUTINE DO2BHF (X, XEND, N, Y, TOL, IRELAB, HMAX, FCN, G, W,
1 IFAIL)
INTEGER N, IRELAB, IFAIL
real X, XEND, Y(N), TOL, HMAX, G, W(N,7)
EXTERNAL FCN, G
Description

The routine advances the solution of a system of ordinary differential equations

Yi = [i(XY1.Y20)s i=12..n,

from x = X towards x = XEND using a Merson form of the Runge-Kutta method. The system
is defined by a subroutine FCN supplied by the user, which evaluates f; in terms of x and
Y1 Y2:Yn (see Section 5), and the values of y,,y,,...,y, must be given at x = X,

As the integration proceeds, a check is made on the function g(x,y) specified by the user, to
determine an interval where it changes sign. The position of this sign change is then determined
accurately by interpolating for the solution and its derivative. It is assumed that g(x,y) is a
continuous function of the variables, so that a solution of g(x,y) = O can be determined by
searching for a change in sign in g(x,y).

The accuracy of the integration and, indirectly, of the determination of the position where
g(x,y) = 0, is controlled by the parameter TOL.

For a description of Runge-Kutta methods and their practical implementation see Hall and Watt
[1].

References

[1] HALL, G. and WATT, J.M. (eds.)
Modern Numerical Methods for Ordinary Differential Equations.
Clarendon Press, Oxford, p. 59, 1976.

Parameters
X - real. Input/ Output
On entry: X must be set to the initial value of the independent variable x.

On exit: the point where g(x,y) = 0.0 unless an error has occurred, when it contains the
value of x at the error. In particular, if g(x,y) # 0.0 anywhere on the range X to XEND, it
will contain XEND on exit.

XEND - real. Input
On entry: the final value of the independent variable x.
If XEND < X on entry, integration proceeds in a negative direction.

[NP1692/14] Page 1

D02BHF 7 D02 — Ordinary Differential Equations

3: N - INTEGER. Input
On entry: the number of differential equations, n.
Constraint: N > 0.

4: Y(N) — real array. Input/ Output
On entry: the initial values of the solution y,,y,,...,y,-
On exit: the computed values of the solution at the final point x = X.

5: TOL — real. Input/ Output

On entry: TOL must be set to a positive tolerance for controlling the error in the integration
and in the determination of the position where g(x,y) = 0.0.

DO02BHF has been designed so that, for most problems, a reduction in TOL leads to an
approximately proportional reduction in the error in the solution obtained in the integration.
The relation between changes in TOL and the error in the determination of the position
where g(x,y) = 0.0 is less clear, but for TOL small enough the error should be
approximately proportional to TOL. However, the actual relation between TOL and the
accuracy cannot be guaranteed. The user is strongly recommended to call DO2BHF with
more than one value for TOL and to compare the results obtained to estimate their accuracy.
In the absence of any prior knowledge the user might compare results obtained by calling
DO02BHF with TOL = 10.07 and TOL = 10.07™" if p correct decimal digits in the
solution are required.

Constraint: TOL > 0.0.

On exit: normally unchanged. However if the range from x = X to the position where
g(x,y) = 0.0 (or to the final value of x if an error occurs) is so short that a small change
in TOL is unlikely to make any change in the computed solution, then TOL is returned with
its sign changed. To check results returned with TOL < 0.0, DO2BHF should be called
again with a positive value of TOL whose magnitude is considerably smaller than that of the
previous call.

6: IRELAB — INTEGER. Input

Onentry. IRELAB determines the type of error control. At each step in the numerical
solution an estimate of the local error, EST, is made. For the current step to be accepted the
following condition must be satisfied:

IRELAB = 0
EST < TOLxmax{1.0,y,,ly,l,-..[y.1};
IRELAB =1
EST < TOL;
IRELAB = 2
EST < TOLxmax{&,[y, |y, -y, |},
where € is machine precision.

If the appropriate condition is not satisfied, the stepsize is reduced and the solution
recomputed on the current step.

If the user wishes to measure the error in the computed solution in terms of the number of
correct decimal places, then IRELAB should be given the value 1 on entry, whereas if the
error requirement is in terms of the number of correct significant digits, then IRELAB
should be given the value 2. Where there is no preference in the choice of error test,
IRELAB = 0 will result in a mixed error test. It should be borne in mind that the computed
solution will be used in evaluating g(x,y).

Constraint: 0 < IRELAB < 2.

Page 2 [NP1692/14)

D02 - Ordinary Differential Equations D02BHF

7. HMAX - real. Input
Onentry: if HMAX = 0.0, no special action is taken.

If HMAX # 0.0, a check is made for a change in sign of g(x,y) at steps not greater than
|[HMAX]|. This facility should be used if there is any chance of ‘missing’ the change in sign
by checking too infrequently. For example, if two changes of sign of g(x,y) are expected
within a distance A, say, of each other, then a suitable value for HMAX might be
HMAX = h/2. If only one change of sign in g (x,y) is expected on the range X to XEND,
then the choice HMAX = 0.0 is most appropriate.

8: FCN - SUBROUTINE, supplied by the user. External Procedure

FCN must evaluate the functions f; (i.e. the derivatives y;) for given values of its
arguments X,y y,...,, -

Its specification is:

SUBROUTINE FCN(X, Y, F)

real X, Y(n), F(n)
where n is the actual value of N in the call of DO2BHF.
1 X -real. Input

On entry: the value of the argument x.

22 Y(n) - real array. Input
On entry: the value of the argument y;, fori = 12...n.

32 F(n) - real array. Output
On exit: the value of f;, fori = 1,2...,n.

FCN must be declared as EXTERNAL in the (sub)program from which DO2BHF is called.
Parameters denoted as Input must not be changed by this procedure.

9: G - real FUNCTION, supplied by the user. External Procedure
G must evaluate the function g (x,y) at a specified point.
Its specification is:

real FUNCTION G(X, Y)
real X, Y(n)
where n is the actual value of N in the call of DO2BHF.
1: X -real. Input
On entry: the value of the independent variable x.
22 Y(n) - real array. Input
On entry: the value of y;, fori = 1L2...,n.

G must be declared as EXTERNAL in the (sub)program from which DO2BHF is called.
Parameters denoted as Input must not be changed by this procedure.

10: W(N,7) - real array. Workspace

11: [FAIL - INTEGER. Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

[NP2834/17) Page 3

DO02BHF D02 - Ordinary Differential Equations

6. Error Indicators and Warnings
Errors detected by the routine:

IFAIL =1

On entry, TOL < 0.0,

or N <0,

or IRELAB # 0, 1 or 2.
IFAIL = 2

With the given value of TOL, no further progress can be made across the integration range
from the current point x = X, or dependence of the error on TOL would be lost if further
progress across the integration range were attempted (see Section 8 for a discussion of this
error exit). The components Y(1),Y(2),..,Y(n) contain the computed values of the
solution at the current point x = X. No point at which g (x,») changes sign has been located
up to the point x = X.

IFAIL = 3

TOL is too small for the routine to take an initial step (see Section 8). X and
Y (1),Y(2),..,Y(n) retain their initial values.

IFAIL = 4

At no point in the range X to XEND did the function g (x,y) change sign. It is assumed that
g (xy) = 0.0 has no solution.

IFAIL = 5

A serious error has occurred an internal call to CO5AZF. Check all subroutine calls and
array dimensions. Seek expert help.

IFAIL = 6

A serious error has occurred an internal call to an integration routine. Check all subroutine
calls and array dimensions. Seek expert help.

IFAIL = 7

A serious error has occurred an internal call to an interpolation routine. Check all subroutine
calls and array dimensions. Seek expert help.

7. Accuracy

The accuracy depends on TOL, on the mathematical properties of the differential system, on the
position where g(x,y) = 0.0 and on the method. It can be controlled by varying TOL but the
approximate proportionality of the error to TOL holds only for a restricted range of values of
TOL. For TOL too large, the underlying theory may break down and the result of varying TOL
may be unpredictable. For TOL too small, rounding error may affect the solution significantly
and an error exit with IFAIL = 2 or IFAIL = 3 is possible.

The accuracy may also be restricted by the properties of g (x,y). The user should try to code G
without introducing any unnecessary cancellation errors.

8. Further Comments

The time taken by the routine depends on the complexity and mathematical properties of the
system of differential equations defined by FCN, the complexity of G, on the range, the position
of the solution and the tolerance. There is also an overhead of the form a + bxn where a and b
are machine-dependent computing times.

Page 4 [NP2834117)

D02 - Ordinary Differential Equations D02BHF

For some problems it is possible that DO2ZBHF will return IFAIL = 4 because of inaccuracy of
the computed values Y, leading to inaccuracy in the computed values of g (x,v) used in the search
for the solution of g(x,y) = 0.0. This difficulty can be overcome by reducing TOL sufficiently,
and if necessary, by choosing HMAX sufficiently small. If possible, the user should choose
XEND well beyond the expected point where g(xy) = 0.0; for example make |XEND-X|
about 50% larger than the expected range. As a simple check, if, with XEND fixed, a change in
TOL does not lead to a significant change in Y at XEND, then inaccuracy is not a likely source
of error.

If the routine fails with IFAIL = 3, then it could be called again with a larger value of TOL if
this has not already been tried. If the accuracy requested is really needed and cannot be obtained
with this routine, the system may be very stiff (see below) or so badly scaled that it cannot be
solved to the required accuracy.

If the routine fails with IFAIL = 2, it is likely that it has been called with a value of TOL which
is so small that a solution cannot be obtained on the range X to XEND. This can happen for
well-behaved systems and very small values of TOL. The user should, however, consider
whether there is a more fundamental difficulty. For example:

(a) in the region of a singularity (infinite value) of the solution, the routine will usually stop
with IFAIL = 2, unless overflow occurs first. If overflow occurs using DO2BHF, DO2PDF
can be used instead to detect the increasing solution, before overflow occurs. In any case,
numerical integration cannot be continued through a singularity, and analytical treatment
should be considered;

(b) for ‘stiff’ equations, where the solution contains rapidly decaying components, the routine -
will compute in very small steps in x (internally to DO2BHF) to preserve stability. This will
usually exhibit itself by making the computing time excessively long, or occasionally by an
exit with IFAIL = 2. Merson’s method is not efficient in such cases, and the user should try
DO2EJF which uses a Backward Differentiation Formula method. To determine whether a
problem is stiff, DO2PCF may be used.

For well-behaved systems with no difficulties such as stiffness or singularities, the Merson
method should work well for low accuracy calculations (three or four figures). For high
accuracy calculations or where FCN is costly to evaluate, Merson’s method may not be
appropriate and a computationally less expensive method may be DO2CJF which uses an Adams
method.

For problems for which DO2BHF is not sufficiently general, the user should consider DO2PDF.
DO2PDF is a more general routine with many facilities including a more general error control
criterion. DO2PDF can be combined with the rootfinder COSAZF and the interpolation routine
DO02PXF to solve equations involving y,,y,,...,v, and their derivatives.

DO2BHF can also be used to solve an equation involving X, ¥,,V ...y, and the derivatives of
V1YoV, For example in Section 9, DO2BHF is used to find a value of X > 0.0 where

Y(1) = 0.0. It could instead be used to find a turning-point of y, by replacing the function
g(x,y) in the program by:

real FUNCTION G(X,Y)

real X,Y(3),F(3)

CALL FCN(X,Y,F)

G = F(1)

RETURN

END

This routine is only intended to locate the first zero of g(x,y). If later zeros are required, users
are strongly advised to construct their own more general root finding routines as discussed above.

[NP2834117) Page 5

D02BHF D02 - Ordinary Differential Equations

9.

9.1.

Page 6

Example
To find the value X > 0.0 at which y = 0.0, where y, v, ¢ are defined by
V' =tan¢
v o= —0.032tan ¢ 0.02v
v cos ¢
o = —O.(2)32
v

and where at X = 0.0 we are given y = 0.5, v = 0.5 and ¢ = a/5. We write y = Y(1),
v =Y(2) and ¢ = Y(3) and we set TOL = 1.0E-4 and TOL = 1.0E-5 in turn so that we can
compare the solutions. We expect the solution X = 7.3 and so we set XEND = 10.0 to avoid
determining the solution of y = 0.0 too near the end of the range of integration. The value of x
is obtained by using X01AAF.

Program Text
Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read

the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO2BHF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER N
PARAMETER (N=3)
* .. Local Scalars ..
real HMAX, PI, TOL, X, XEND
INTEGER I, IFAIL, IRELAB, J
* .. Local Arrays ..
real W(N,7), Y(N)
* .. External Functions ..
real G, XO01AAF
EXTERNAL G, X01AAF
* .. External Subroutines ..
EXTERNAL DO2BHF, FCN
* .. Executable Statements ..

WRITE (NOUT,*) ‘DO2BHF Example Program Results~’
XEND = 10.0e0
HMAX = 0.0e0
IRELAB = 0
PI = X01AAF(X)
DO 20 0 =4, 5
TOL = 10.0e0**(-J)
WRITE (NOUT, *)
WRITE (NOUT,99999) ‘Calculation with TOL =’, TOL

X = 0.0e0

Y(1) = 0.5e0
Y(2) = 0.5e0
Y(3) = 0.2e0+PI
IFAIL = 0

CALL DO2BHF(X,XEND,N,Y,TOL,IRELAB, HMAX, FCN,G,W, IFAIL)

WRITE (NOUT,b99998) / Root of Y(1) at’, X
WRITE (NOUT,99997) ’ Solution is’, (Y(I),I=1,N)
IF (TOL.LT.0.0e0) WRITE (NOUT, *)
+ / Over one-third steps controlled by HMAX’
20 CONTINUE
STOP

99999 FORMAT (1X,A,e8.1)

99998 FORMAT (1X,A,F7.4)

99997 FORMAT (1X,A,3F13.5)
END

(NP2834117]

DO02 - Ordinary Differential Equations

SUBROUTINE FCN(T,Y,F)

Parameters
INTEGER N
PARAMETER (N=3)
Scalar Arguments
real T
. Array Arguments ..
real F(N), Y(N)
.. Intrinsic Functions
INTRINSIC COS, TAN

Executable Statements
F(1l) = TAN(Y(3))
F(2) = —0.032€0*TAN(Y(3))/¥Y(2) — 0.02e0*Y(2)/COS(Y(3))
F(3) = —-0.032e0/Y(2)**2
RETURN
END

real FUNCTION G(T,Y)
.. Parameters

INTEGER N

PARAMETER (N=3)
Scalar Arguments ..

real T

.. Array Arguments

real Y(N)

.. Executable Statements

G = Y(1)

RETURN

END

9.2. Program Data

None.

9.3. Program Results
DO2BHF Example Program Results

Calculation with TOL = 0.1E-03
Root of Y(1) at 7.2884
Solution is 0.00000 0.47485 -0.76010

Calculation with TOL = 0.1E-04
Root of Y(1) at 7.2883
Solution is 0.00000 0.47486 -0.76011

D02BHF

[NP1692/14]

Page 7 (last)

D02 - Ordinary Differential Equations DO02BJF

D02BJF — NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

DO02BJF integrates a system of first-order ordinary differential equations over an interval with suitable
initial conditions, using a fixed order Runge-Kutta method (RK), until a user-specified function, if
supplied, of the solution is zero, and returns the solution at points specified by the user, if desired.

2 Specification

SUBROUTINE DO2BJF(X, XEND, N, Y, FCN, TOL, RELABS, OUTPUT, G, W,
1 IFAIL)

real X, XEND, Y(N), TOL, G, W(20N)
INTEGER N, IFAIL

CHARACTER#1 RELABS

EXTERNAL FCN, OUTPUT, G

3 Description
The routine advances the solution of a system of ordinary differential equations

y: :fi(x)ylvyzy"~yyn)) 2= 1)21"'vnv

from z = X to £ = XEND using a fixed order Runge—Kutta method. The system is defined by a subroutine
FCN supplied by the user, which evaluates f; in terms of z and y = (y,¥,, ..., ¥,). The initial values of
v = (¥1,¥2,---,Y,) must be given at z = X.

The solution is returned via the user-supplied subroutine OUTPUT at points specified by the user, if
desired: this solution is obtained by C! interpolation on solution values produced by the method. As the
integration proceeds a check can be made on the user-specified function g(z,y) to determine an interval
where it changes sign. The position of this sign change is then determined accurately by C"! interpolation
to the solution. It is assumed that g(z,y) is a continuous function of the variables, so that a solution of
g(z,y) = 0 can be determined by searching for a change in sign in g(z,y). The accuracy of the integration,
the interpolation and, indirectly, of the determination of the position where g(z,y) = 0, is controlled by
the parameters TOL and RELABS.

4 References

[1] Shampine L F (1994) Numerical solution of ordinary differential equations Chapman and Hall

5 Parameters

1: X —real Input/Output
On entry: the initial value of the independent variable z.
On ezit: if g is supplied by the user, it contains the point where g(z,y) = 0, unless g(z,y) # 0
anywhere on the range X to XEND, in which case, X will contain XEND (and the error indicator

IFAIL = 6 is set); if g is not supplied by the user it contains XEND. However, if an error has
occurred, it contains the value of z at which the error occurred.

2: XEND — real Input
On entry: the final value of the independent variable. If XEND < X, integration will proceed in
the negative direction.

Constraint: XEND # X.

[NP3086/18] DO02BJF.1

D02BJF D02 - Ordinary Differential Equations

3: N — INTEGER Input

On entry: the number of equations, n.
Constraint: N > 0.

4: Y(N) — real array Input/Output
On entry: the initial values of the solution y;,¥,,...,y, at z = X.

On ezit: the computed values of the solution at the final point z = X.

5: FCN — SUBROUTINE, supplied by the user. Ezrternal Procedure
FCN must evaluate the functions f; (i.e., the derivatives y;) for given values of its arguments
.Y, Yn-

Its specification is:

SUBROUTINE FCN(X, Y, F)
real X, Y(), F(%)

1: X — real Input
On entry: the value of the independent variable z.

2: Y(x) — real array Input
On entry: the value of the variable y;, for i =1,2,...,n.

3: F(x) — real array Output
On ezit: the value of f;, fori=1,2,...,n.

FCN must be declared as EXTERNAL in the (sub)program from which D02BJF is called.
Parameters denoted as Input must not be changed by this procedure.

6: TOL — real Input

On eniry: a positive tolerance for controlling the error in the integration. Hence TOL affects the
determination of the position where g(z,y) = 0, if g is supplied.

DO02BJF has been designed so that, for most problems, a reduction in TOL leads to an approximately
proportional reduction in the error in the solution. However, the actual relation between TOL and
the accuracy achieved cannot be guaranteed. The user is strongly recommended to call DO2BJF with
more than one value for TOL and to compare the results obtained to estimate their accuracy. In
the absence of any prior knowledge, the user might compare the results obtained by calling D02BJF
with RELABS set to ’D’ and with each of TOL = 10.0? and TOL = 10.07?~! where p correct
significant digits are required in the solution, y. The accuracy of the value z such that g(z,y) = 0
is indirectly controlled by varying TOL. The user should experiment to determine this accuracy.

Constraint: 10.0 x machine precision < TOL < 0.01.

7: RELABS — CHARACTER*1 Input

On entry: the type of error control. At each step in the numerical solution an estimate of the local
error, EST, is made. For the current step to be accepted the following condition must be satisfied:

EST = max(ei/(‘r, x ma‘x(lyil’ra))) S 1.0

where 7, and 7, are defined by

RELABS T, T,
™’ TOL 1.0
‘A’ €, TOL/e,
'R’ TOL €q
'D’ TOL €4

DO02BJF.2 [NP3086/18]

D02 - Ordinary Differential Equations D02BJF

where ¢, and ¢, are small machine-dependent numbers and ¢; is an estimate of the local error at
y;, computed internally. If the condition is not satisfied, the step size is reduced and the solution is
recomputed on the current step. If the user wishes to measure the error in the computed solution in
terms of the number of correct decimal places, then RELABS should be set to ’A’ on entry, whereas
if the error requirement is in terms of the number of correct significant digits, then RELABS should
be set to 'R’. If the user prefers a mixed error test, then RELABS should be set to "M’, otherwise
if the user has no preference, RELABS should be set to the default 'D’. Note that in this case 'D’
is taken to be 'R’.

Constraint: RELABS = ’M’,’A’,'R’,’D’.

8: OUTPUT — SUBROUTINE, supplied by the user. Erternal Procedure

OUTPUT permits access to intermediate values of the computed solution (for example to print or
plot them), at successive user-specified points. It is initially called by D02BJF with XSOL = X
(the initial value of z). The user must reset XSOL to the next point (between the current XSOL
and XEND) where OUTPUT is to be called, and so on at each call to OUTPUT. If, after a call to
OUTPUT, the reset point XSOL is beyond XEND, D02BJF will integrate to XEND with no further
calls to OUTPUT,; if a call to OUTPUT is required at the point XSOL = XEND, then XSOL must
be given precisely the value XEND.

Its specification is:

SUBROUTINE OUTPUT(XSOL, Y)
real XSOL, Y(%)

1: XSOL — real Input/Output
On entry: the output value of the independent variable z.

On ezit: the user must set XSOL to the next value of z at which OUTPUT is to be called.

2: Y(x) — real array Input
On entry: the computed solution at the point XSOL.

If the user does not wish to access intermediate output, the actual argument OUTPUT must be
the dummy routine D02BJX. (D02BJX is included in the NAG Fortran Library and so need not be
supplied by the user. The name may be implementation-dependent: see the Users’ Note for your
implementation for details.)

OUTPUT must be declared as EXTERNAL in the (sub)program from which D02BJF is called.
Parameters denoted as Input must not be changed by this procedure.
9: G — real FUNCTION, supplied by the user. External Procedure

G must evaluate the function g(z,y) for specified values z,y. It specifies the function g for which
the first position where g(z,y) = 0 is to be found.

Its specification is:

real FUNCTION G(X, Y)
real X, Y(%)

1: X —real Input
On entry: the value of the independent variable z.

2: Y(x) — real array Input
On entry: the value of the variable y;, for i =1,2,...,n.

[NP3086/18] D02BJF.3

D02BJF D02 - Ordinary Differential Equations

If the user does not require the root finding option, the actual argument G must be the dummy
routine DO2BJW. (D02BJW is included in the NAG Fortran Library and so need not be supplied by
the user. The name may be implementation-dependent: see the Users’ Note for your implementation

for details.)
G must be declared as EXTERNAL in the (sub)program from which DO2BJF is called. Parameters
denoted as Input must not be changed by this procedure.

10: W(20%N) — real array Workspace

11: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

On ezit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Errors and Warnings

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors detected by the routine:
IFAIL =1

On entry, TOL > 0.01,
or TOL is too small
or N <O,
or RELABS # 'M’,’A’, 'R’ or 'D’,
or X = XEND.
IFAIL = 2
With the given value of TOL, no further progress can be made across the integration range from
the current point z = X. (See Section 8 for a discussion of this error exit.) The components
Y(1),Y(2),...,Y(N) contain the computed values of the solution at the current point z = X. If the
user has supplied g, then no point at which g(z,y) changes sign has been located up to the point
z =X.
IFAIL = 3
TOL is too small for DO2BJF to take an initial step. X and Y(1),Y(2),...Y(N) retain their initial
values.
IFAIL = 4
XSOL has not been reset or XSOL lies behind X in the direction of integration, after the initial
call to OUTPUT, if the OUTPUT option was selected.
IFAIL = 5
A value of XSOL returned by OUTPUT has not been reset or lies behind the last value of XSOL
in the direction of integration, if the OUTPUT option was selected.
IFAIL = 6
At no point in the range X to XEND did the function g(z,y) change sign, if g was supplied. It is
assumed that g(z,y) = 0 has no solution.
IFAIL = 7

A serious error has occurred in an internal call to an interpolation routine. Check all subroutine
calls and array dimensions. Seek expert help.

D02BJF .4 [NP3086/18]

D02 - Ordinary Differential Equations DO02BJF

7 Accuracy

The accuracy of the computation of the solution vector Y may be controlled by varying the local error
tolerance TOL. In general, a decrease in local error tolerance should lead to an increase in accuracy.
Users are advised to choose RELABS = ’D’ unless they have a good reason for a different choice.

If the problem is a root-finding one, then the accuracy of the root determined will depend on the properties
of g(z,y) and on the values of TOL and RELABS. The user should try to code G without introducing

any unnecessary cancellation errors.

8 Further Comments

If more than one root is required, then to determine the second and later roots D02BJF may be called
again starting a short distance past the previously determined roots. Alternatively the user may construct
his own root finding code using DO2PDF, DO2PXF and CO5AZF.

If the routine fails with IFAIL = 3, then it can be called again with a larger value of TOL if this has not
already been tried. If the accuracy requested is really needed and cannot be obtained with this routine,
the system may be very stiff (see below) or so badly scaled that it cannot be solved to the required
accuracy.

If the routine fails with IFAIL = 2, it is probable that it has been called with a value of TOL which is
so small that a solution cannot be obtained on the range X to XEND. This can happen for well-behaved
systems and very small values of TOL. The user should, however, consider whether there is a more
fundamental difficulty. For example:

(a) in the region of a singularity (infinite value) of the solution, the routine will usually stop with IFAIL
= 2, unless overflow occurs first. Numerical integration cannot be continued through a singularity,
and analytic treatment should be considered,;

(b) for ‘stiff” equations where the solution contains rapidly decaying components, the routine will use
very small steps in z (internally to DO2BJF) to preserve stability. This will exhibit itself by making
the computing time excessively long, or occasionally by an exit with IFAIL = 2. Runge-Kutta
methods are not efficient in such cases, and the user should try DO2EJF.

9 Example
We illustrate the solution of four different problems. In each case the differential system (for a projectile)
is

Y = tan¢

o = —0.032tané 0.02v

- v cos ¢
—0.032
v

over an interval X = 0.0 to XEND = 10.0 starting with values y = 0.5, v = 0.5 and ¢ = 7/5. We solve
each of the following problems with local error tolerances 1.0E—4 and 1.0E-5.

(i) To integrate to z = 10.0 producing intermediate output at intervals of 2.0 until a root is encountered
where y = 0.0.
(i1) As (i) but with no intermediate output.
(i) As (i) but with no termination on a root-finding condition.
(iv) As (i) but with no intermediate output and no root-finding termination condition.

[NP3086/18] DO02BJF.5

D02BJF

D02 - Ordinary Differential Equations

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

DO2BJF Example Program Text
Mark 18 Release. NAG Copyright 1997.

. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER N, IW
PARAMETER (N=3,IW=20%*N)
. Scalars in Common ..
real H, XEND
INTEGER K
. Local Scalars ..
real PI, TOL, X
INTEGER I, IFAIL, J
. Local Arrays ..
real W(Iw), Y(N)
. External Functioms ..
real DO2BJW, G, XO1AAF
EXTERNAL DO2BJW, G, XO1AAF
. External Subroutines ..
EXTERNAL DO2BJF, D02BJX, FCN, OUT
. Intrinsic Functioms ..
INTRINSIC real
. Common blocks ..
COMMON XEND, H, K

. Executable Statements ..
WRITE (NOUT,*) ’DO2BJF Example Program Results’
XEND = 10.0e0
PI = XO01AAF(0.0e0)
WRITE (NOUT,*)
WRITE (NOUT,*) ’Case 1: intermediate output, root-finding’
DO 20J =4, 5
TOL = 10.0e0**(-7J)
WRITE (NOUT,*)
WRITE (NOUT,99999) ’ Calculation with TOL =’, TOL
X = 0.0e0
Y(1) = 0.5e0
Y(2) = 0.5e0
Y(3) = PI/5.0e0
K =24
H = (XEND-X)/real(K+1)
WRITE (NOUT,*) ° X Y(1) Y(2)
IFAIL = O

CALL DO2BJF(X,XEND,N,Y,FCN,TOL, ’Default’,0UT,G,W,IFAIL)

WRITE (NOUT,99998) > Root of Y(1) = 0.0 at’, X
WRITE (NOUT,99997) ’ Solution is’, (Y(I),I=1,N)

20 CONTINUE

D02BJF.6

WRITE (NOUT,=*)
WRITE (NOUT,*)

Y(3)’

WRITE (NOUT,*) ’Case 2: no intermediate output, root-finding’

DO 40 J =4, 5
TOL = 10.0e0**(-J)
WRITE (NOUT,*)

[NP3086/18]

D02 - Ordinary Differential Equations

WRITE (NOUT,99999) ’ Calculation with TOL =’, TOL
X = 0.0e0

Y(1) = 0.5e0

Y(2) 0.5e0

Y(3) P1/65.0e0

IFAIL = 0

CALL DO2BJF(X,XEND,N,Y,FCN,TOL, 'Default’,D0O2BJX,G,W,IFAIL)

WRITE (NOUT,99998) ’ Root of Y(1) = 0.0 at’, X
WRITE (NOUT,99997) ’ Solution is’, (Y(1),I=1,N)
40 CONTINUE
WRITE (NOUT,*)
WRITE (NOUT,*)
WRITE (NOUT,#*) ’Case 3: intermediate output, no root-finding’
DO 60 J =4, 5
TOL = 10.0e0**(-J)
WRITE (NOUT,*)
WRITE (NOUT,99999) ’ Calculation with TOL =’, TOL
X = 0.0e0
Y(1) 0.5e0
Y(2) = 0.5€0
Y(3) = P1/5.0e0
K =4
H = (XEND-X)/real(K+1)

WRITE (NOUT,*) ’ X Y(1) Y(2) Y(3)’

IFAIL = 0
CALL DO2BJF(X,XEND,N,Y,FCN,TOL, ’Default’,0UT,D02BJW,W,IFAIL)

60 CONTINUE
WRITE (NOUT,*)
WRITE (NOUT,*)
WRITE (NOUT,*)

+’Case 4: no intermediate output, no root-finding (integrate to XE

+ND)?’
D080 J=4,5
TOL = 10.0e0%**(-J)
WRITE (NOUT,*)
WRITE (NOUT,99999) ’ Calculation with TOL =’, TOL
X = 0.0e0
Y(1) = 0.5e0
Y(2) = 0.5e0
Y(3) = P1/5.0e0

[}

WRITE (NOUT,*) °’ X Y(1) Y(2) Y(3)’

WRITE (NOUT,99996) X, (Y(I),I=1,N)
IFAIL = O

CALL DO2BJF(X,XEND,N,Y,FCN,TOL, ’Default’,DO2BJX,DO2BJW,W,IFAIL)

WRITE (NOUT,99996) X, (Y(I),I=1,N)
80 CONTINUE
STOP

[NP3086/18]

D02BJF

DO02BJF.7

D02BJF

99999
99998
99997
99996

99999

D02BJF.8

FORMAT
FORMAT
FORMAT
FORMAT
END

D02 - Ordinary Differential Equations

(1X,A,e8.1)
(1X,A,F7.3)
(1X,A,3F13.4)
(1X,F8.2,3F13.4)

SUBROUTINE OUT(X,Y)

.. Parameters .

INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER N
PARAMETER (N=3)

. Scalar Arguments ..
real X

. Array Arguments .
real Y(N)

. Scalars in Common ..
real H, XEND
INTEGER I

. Local Scalars ..
INTEGER J
.. Intrinsic Functions ..
INTRINSIC real

. Common blocks ..

COMMON

XEND, H, I

. Executable Statements ..
WRITE (NOUT,99999) X, (Y(J),J=1,N)
X = XEND - real(I)*H
I=I-1

RETURN

FORMAT
END

(1X,F8.2,3F13.4)

SUBROUTINE FCN(T,Y,F)

.. Parameters .
INTEGER N
PARAMETER (N=3)

. Scalar Arguments ..

real

T

. Array Arguments ..

real

F(N), Y(N)

. Intrinsic Functions ..
INTRINSIC C0S, TAN
. Executable Statements .

F(1)
F(2)
F(3)
RETURN
END

TAN(Y(3))
-0.032e0*TAN(Y(3))/Y(2) - 0.02e0%*Y(2)/C0S(Y(3))
-0.032e0/Y(2)**2

real FUNCTION G(T,Y)

.. Parameters ..
INTEGER N
PARAMETER (N=3)

. Scalar Arguments ..

real

T

[NP3086/18]

D02 - Ordinary Differential Equations

* .. Array Arguments .
real Y(N)
* .. Executable Statements .
G =Y(1)
RETURN
END

9.2 Program Data

None.

9.3 Program Results
DO2BJF Example Program Results
Case 1: intermediate output, root-finding

Calculation with TOL = 0.1E-03

X Y(1) Y(2) Y(3)
0.00 0.5000 0.5000 0.6283
2.00 1.5493 0.4055 0.3066
4.00 1.7423 0.3743 -0.1289
6.00 1.0055 0.4173 -0.5507

Root of Y(1) = 0.0 at 7.288
Solution is 0.0000 0.4749 -0

Calculation with TOL = 0.1E-04

X Y(1) Y(2) Y(3)
0.00 0.5000 0.5000 0.6283
2.00 1.6493 0.4055 0.3066
4.00 1.7423 0.3743 -0.1289
6.00 1.0055 0.4173 -0.5507

Root of Y(1) = 0.0 at 7.288
Solution is 0.0000 0.4749 -0

Case 2: no intermediate output, root-finding
Calculation with TOL = 0.1E-03

Root of Y(1) = 0.0 at 7.288

Solution is 0.0000 0.4749 -0
Calculation with TOL = 0.1E-04

Root of Y(1) = 0.0 at 7.288
Solution is 0.0000 0.4749 -0

Case 3: intermediate output, no root-finding

Calculation with TOL = 0.1E-03

X Y(1) Y(2) Y(3)
0.00 0.5000 0.5000 0.6283
2.00 1.5493 0.4055 0.3066
4.00 1.7423 0.3743 -0.1289
6.00 1.0055 0.4173 -0.5507
8.00 -0.7460 0.5130 -0.8537

10.00 -3.6283 0.6333 -1.0515

[NP3086/18]

.7601

.7601

.7601

.7601

D02BJF

D02BJF.9

D02BJF

Calculation with TOL = 0.1E-04
Y(2)

X Y(1)
0.00 0.5000
2.00 1.5493
4.00 1.7423
6.00 1.0055
8.00 -0.7459

10.00 -3.6282

0.
.4055
.3743
.4173
.5130
.6333

O O O OO

5000

Case 4: no intermediate output, no

Calculation with TOL

X Y(1)
0.00 0.5000
10.00 -3.6283

Calculation with TOL

X Y(1)
0.00 0.5000
10.00 -3.6282

0.1E-03
Y(2)

0.
0.

5000
6333

0.1E-04
Y(2)

0.
0.

5000
6333

D02 - Ordinary Differential Equations

Y(3)

0.6283

0.3066
-0.1289
-0.5507
-0.8537
-1.0515

root-finding (integrate to XEND)

Y(3)
0.6283
-1.0515

Y(3)
0.6283
-1.0515

DO02BJF.10 (last)

[NP3086/18]

D02 — Ordinary Differential Equations D02CJF

D02CJF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

DO02CJF integrates a system of first-order ordinary differential equations over a range with
suitable initial conditions, using a variable-order, variable-step Adams method until a
user-specified function, if supplied, of the solution is zero, and returns the solution at points
specified by the user, if desired.

Specification

SUBROUTINE DO2CJF (X, XEND, N, Y, FCN, TOL, RELABS, OUTPUT, G,
1 W, IFAIL)

INTEGER N, IFAIL
real X, XEND, Y(N), TOL, G, W(28+21*N)
CHARACTER*1 RELABS
EXTERNAL FCN, OUTPUT, G

Description

The routine advances the solution of a system of ordinary differential equations
Yi = fi(Xy1Y20¥a)s i=12..n,

from x = X to x = XEND using a variable-order, variable-step Adams method. The system is
defined by a subroutine FCN supplied by the user, which evaluates f; in terms of x and
Y1:Y2s--Y,. The initial values of y,,y,,...,y, must be given at x = X.

The solution is returned via the user-supplied routine OUTPUT at points specified by the user, if
desired: this solution is obtained by C' interpolation on solution values produced by the method.
As the integration proceeds a check can be made on the user-specified function g(x,y) to
determine an interval where it changes sign. The position of this sign change is then determined
accurately by C' interpolation to the solution. It is assumed that g(x,y) is a continuous function
of the variables, so that a solution of g(x,y) = 0.0 can be determined by searching for a change
in sign in g(x,y). The accuracy of the integration, the interpolation and, indirectly, of the
determination of the position where g(x,y) = 0.0, is controlled by the parameters TOL and
RELABS.

For a description of Adams methods and their practical implementation see Hall and Watt [1].

References

[1] HALL, G. and WATT, J.M. (eds).
Modern Numerical Methods for Ordinary Differential Equations.
Clarendon Press, Oxford, 1976.

Parameters

X — real. Input/ Output
On entry: the initial value of the independent variable x.
Constraint: X # XEND.

Onexit: if g is supplied by the user, it contains the point where g(x,y) = 0.0, unless
g(x,y) # 0.0 anywhere on the range X to XEND, in which case, X will contain XEND. If
g is not supplied by the user it contains XEND, unless an error has occurred, when it
contains the value of x at the error.

[NP1692/14] Page 1

DO02CJF D02 — Ordinary Differential Equations

2. XEND - real. Input

On entry: the final value of the independent variable. If XEND < X, integration proceeds in
the negative direction.

Constraint: XEND # X.

3: N - INTEGER. Input
On entry. the number of differential equations.
Constraint: N 2 1.

4. Y(N) - real array. Input/ Output
On entry: the initial values of the solution y,,y,,....y, atx = X.
On exit: the computed values of the solution at the final point x = XEND.

5: FCN — SUBROUTINE, supplied by the user. External Procedure
FCN must evaluate the functions f; (i.e. the derivatives y;) for given values of their
arguments X,y ,¥,,..»Y -

Its specification is:

SUBROUTINE FCN (X, Y, F)
real X, ¥(n), F(n)
where n is the actual value of N in the call of DO2CJF.
1: X —real Input
On entry: the value of the independent variable x.
2 Y(n) - real array. Input
On entry: the value of the variable y,, for i = 1,2,...,n.
3: F(n) - real array. Output
On exit: the value of f;, fori = 1,2,...,n.

FCN must be declared as EXTERNAL in the (sub)program from which DO2CJF is called.
Parameters denoted as /nput must not be changed by this procedure.

6: TOL - real. Input

On entry: a positive tolerance for controlling the error in the integration. Hence TOL affects
the determination of the position where g(x,y) = 0.0, if g is supplied.

DO2CJF has been designed so that, for most problems, a reduction in TOL leads to an
approximately proportional reduction in the error in the solution. However, the actual
relation between TOL and the accuracy achieved cannot be guaranteed. The user is strongly
recommended to call DO2CJF with more than one value for TOL and to compare the results
obtained to estimate their accuracy. In the absence of any prior knowledge, the user might
compare the results obtained by calling DO2CJF with TOL = 10.07 and TOL = 10.07"!
where p correct decimal digits are required in the solution.

Constraint: TOL > 0.0.

7: RELABS — CHARACTER*1. Input

On entry: the type of error control. At each step in the numerical solution an estimate of the
local error, EST, is made. For the current step to be accepted the following condition must
be satisfied:

EST = _[Y (e,/ (7, X|y;|+7,))* < 1.0
=1

where 7, and 7, are defined by

Page 2 [NP1692/14)

D02 - Ordinary Differential Equations D02CJF

RELABS T, 7,
‘™M TOL TOL
A 0.0 TOL
R’ TOL €
D’ TOL TOL

where € is a small machine-dependent number and e; is an estimate of the local error at y,,
computed internally. If the appropriate condition is not satisfied, the stepsize is reduced and
the solution is recomputed on the current step. If the user wishes to measure the error in the
computed solution in terms of the number of correct decimal places, then RELABS should
be set to ‘A’ on entry, whereas if the error requirement is in terms of the number of correct
significant digits, then RELABS should be set to 'R'. If the user prefers a mixed error test,
then RELABS should be set to 'M', otherwise if the user has no preference, RELABS should
be set to the default 'D'. Note that in this case D' is taken to be 'M'.

Constraint: RELABS = 'M, 'A', 'R’ or D'.

8: OUTPUT - SUBROUTINE, supplied by the user. External Procedure

OUTPUT permits access to intermediate values of the computed solution (for example to
print or plot them), at successive user specified points. It is initially called by DO2CJF with
XSOL = X (the initial value of x). The user must reset XSOL to the next point (between
the current XSOL and XEND) where OUTPUT is to be called, and so on at each call to
OUTPUT. I, after a call to OUTPUT, the reset point XSOL is beyond XEND, DO2CJF will
integrate to XEND with no further calls to OUTPUT; if a call to OUTPUT is required at the
point XSOL = XEND, then XSOL must be given precisely the value XEND.

Its specification is:

SUBROUTINE OUTPUT (XSOL, Y)

real XSOL, Y(n)
where n is the actual value of N in the call of DO2CJF.
1: XSOL - real. Input/ Output

On entry: the output value of the independent variable x.

On exit: the user must set XSOL to the next value of x at which OUTPUT is to be
called.

2: Y(n) - real array. Input

On entry: the computed solution at the point XSOL.

9: G-

If the user does not wish to access intermediate output, the actual argument OUTPUT must
be the dummy routine DO2CJX. (D02CJX is included in the NAG Fortran Library and so
need not be supplied by the user. The name may be implementation-dependent: see the
Users’ Note for your implementation for details.)

OUTPUT must be declared as EXTERNAL in the (sub)program from which DO2CJF is
called. Parameters denoted as /nput must not be changed by this procedure.

real FUNCTION, supplied by the user. External Procedure

G must evaluate the function g(x,y) for specified values x,y. It specifies the function g for
which the first position x where g(x,y) = 0 is to be found.

Its specification is:

real FUNCTION G(X, Y)
real X, Y(n)

where n is the actual value of N in the call of DO2CJF.

[NP1692/14)

Page 3

D02CJF D02 - Ordinary Differential Equations

10:

11:

1: X - real. Input
On entry: the value of the independent variable x.
2: Y(n) - real array. Input

On entry: the value of the variable y,, for i = 1,2,...,n.

If the user does not require the root finding option, the actual argument G must be the
dummy routine DO2CJW. (D02CJW is included in the NAG Fortran Library and so need
not be supplied by the user. The name may be implementation-dependent: see the Users’
Note for your implementation for details.)

G must be declared as EXTERNAL in the (sub)program from which DO2CJF is called.
Parameters denoted as /nput must not be changed by this procedure.

W(28+21%N) — real array. Workspace

IFAIL - INTEGER. Input/ Output

Onentry. IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is O.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL = 1
On entry, TOL < 0.0,
or N £ 0,
or RELABS # M, ‘A, 'R'or D',
or X = XEND.
IFAIL = 2

With the given value of TOL, no further progress can be made across the integration range
from the current point x = X. (See Section 8 for a discussion of this error exit.) The
components Y(1),Y(2),...,Y(N) contain the computed values of the solution at the current
point x = X. If the user has supplied g, then no point at which g(x,y) changes sign has been
located up to the point x = X,

IFAIL = 3

TOL is too small for DO2CJF to take an initial step. X and Y(1),Y(2),...,Y(N) retain their
initial values.

IFAIL = 4

XSOL has not been reset or XSOL lies behind X in the direction of integration, after the
initial call to OUTPUT, if the OUTPUT option was selected.

IFAIL = 5

A value of XSOL returned by OUTPUT has not been reset or lies behind the last value of
XSOL in the direction of integration, if the OUTPUT option was selected.

IFAIL = 6

At no point in the range X to XEND did the function g(x,y) change sign, if g was supplied.
It is assumed that g(x,y) = 0 has no solution.

Page 4 [NP1692/14)

DO02 - Ordinary Differential Equations D02CJF

IFAIL = 7

A serious error has occurred in an internal call. Check all subroutine calls and array sizes.
Seek expert help.

7. Accuracy

The accuracy of the computation of the solution vector Y may be controlled by varying the local
error tolerance TOL. In general, a decrease in local error tolerance should lead to an increase in
accuracy. Users are advised to choose RELABS = 'M' unless they have a good reason for a
different choice.

If the problem is a root-finding one, then the accuracy of the root determined will depend on the
properties of g(x,y). The user should try to code G without introducing any unnecessary
cancellation errors.

8. Further Comments
If more than one root is required then DO2QFF should be used.

If the routine fails with IFAIL = 3, then it can be called again with a larger value of TOL if this
has not already been tried. If the accuracy requested is really needed and cannot be obtained with
this routine, the system may be very stiff (see below) or so badly scaled that it cannot be solved
to the required accuracy.

If the routine fails with IFAIL = 2, it is probable that it has been called with a value of TOL
which is so small that a solution cannot be obtained on the range X to XEND. This can happen
for well-behaved systems and very small values of TOL. The user should, however, consider
whether there is a more fundamental difficulty. For example:

(a) in the region of a singularity (infinite value) of the solution, the routine will usually stop
with IFAIL = 2, unless overflow occurs first. Numerical integration cannot be continued
through a singularity, and analytic treatment should be considered;

(b) for ‘stiff’ equations where the solution contains rapidly decaying components, the routine
will use very small steps in x (internally to DO2CJF) to preserve stability. This will exhibit
itself by making the computing time excessively long, or occasionally by an exit with
IFAIL = 2. Adams methods are not efficient in such cases, and the user should try DO2EJF.

9. Example

We illustrate the solution of four different problems. In each case the differential system (for a
projectile) is

y' = tan¢
, _ =0.032tan¢ 0.02v
v = -
% cos ¢
, —0.032
9'=—
\4

over an interval X = 0.0 to XEND = 10.0 starting with values y = 0.5, v = 0.5and ¢ = /5.
We solve each of the following problems with local error tolerances 1.0E—4 and 1.0E-5.

(i) To integrate to x = 10.0 producing output at intervals of 2.0 until a point is encountered
where y = 0.0.

(ii) As (i) but with no intermediate output.
(iii) As (i) but with no termination on a root-finding condition.
(iv) As (i) but with no intermediate output and no root-finding termination condition.

[NP1692/14) Page 5

DO02CJF D02 — Ordinary Differential Equations

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO2CJF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER N, IW
PARAMETER (N=3, IW=21*N+28)
* .. Scalars in Common ..
real H, XEND
INTEGER K
* .. Local Scalars ..
real PI, TOL, X
INTEGER I, IFAIL, J
* .. Local Arrays ..
real W(IW), Y(N)
* .. External Functions ..
real D02CJW, G, XO01lAAF
EXTERNAL D02CJW, G, XO0lAAF
* .. External Subroutines ..
EXTERNAL D02CJF, D02CJX, FCN, OUT
* .. Intrinsic Functions ..
INTRINSIC real
* .. Common blocks ..
COMMON XEND, H, K
* .. Executable Statements ..

WRITE (NOUT,*) ’‘D02CJF Example Program Results’
XEND = 10.0e0
PI = X01AAF(0.0e0)
WRITE (NOUT, *)
WRITE (NOUT,*) ’Case 1l: intermediate output, root-finding’
DO 20 J = 4, 5
TOL = 10.0e0**(-J)
WRITE (NOUT, *)
WRITE (NOUT,99999) ’ Calculation with TOL =’, TOL

X = 0.0e0

Y(1l) = 0.5€0

Y(2) = 0.5e0

Y(3) = PI/5.0e0

K=14

H = (XEND-X)/real(K+1)

WRITE (NOUT,*) ' X Y(1) Y(2) Y(3)’
IFAIL = 0

CALL DO02CJF(X,XEND,N, Y, FCN,TOL, ' Default’,OUT,G,W, IFAIL)

WRITE (NOUT,99998) ’ Root of ¥Y(1) = 0.0 at’, X
WRITE (NOUT,99997) ’ Solution is’, (¥(I),I=1,N)
20 CONTINUE
WRITE (NOUT, *)
WRITE (NOUT, *)
WRITE (NOUT,*) ’Case 2: no intermediate output, root-finding’
DO 40 J = 4, 5
TOL = 10.0e0**(-J)
WRITE (NOUT, *)
WRITE (NOUT,99999) ’ Calculation with TOL =’, TOL
X = 0.0e0
Y(1l) = 0.5e0
Y(2) = 0.5€0
Y(3) = PI/5.0e0
IFAIL = 0

Page 6 : [NP1692/14]

D02 - Ordinary Differential Equations

40

60

+’Case 4: no intermediate output, no root-finding (integrate to XE

CALL DO2CJF(X,XEND,N,Y,FCN, TOL, 'Default’,D02CJX,G, W, IFAIL)

WRITE (NOUT,99998) ’ Root of Y(1l) = 0.0 at’, X
WRITE (NOUT,99997) Solution is’, (Y(I),I=1,N)
CONTINUE
WRITE (NOUT, *)
WRITE (NOUT, %)
WRITE (NOUT,*) ‘Case 3: intermediate output, no root-finding’
DO 60 g =4, 5
TOL = 10.0e0**(-J)
WRITE (NOUT, *)
WRITE (NOUT,99999) ’ Calculation with TOL =’, TOL
X = 0.0e0
Y(1l) = 0.5e0
Y(2) = 0.5e0
Y(3) = PI/5.0e0
K =4
H = (XEND-X) /real(K+1)

WRITE (NOUT,*) ' X Y(1) Y(2) Y(3)’

IFAIL = 0
CALL DO2CJF (X, XEND, N, Y, FCN, TOL, 'Default’,OUT,D02CJW, W, IFAIL)

CONTINUE

WRITE (NOUT,)
WRITE (NOUT, *)
WRITE (NOUT, *)

+ND)’

80

99999
99998
99997
99996

[NP1692/14]

DO 80 g =4, 5
TOL = 10.0e0*%(-J)
WRITE (NOUT, *)
WRITE (NOUT,99999) ’ Calculation with TOL =’ TOL
X = 0.0e0
Y(1) = 0.5e0
Y(2) = 0.5e0
Y(3) = PI/5.0e0

WRITE (NOUT,*) ' X Y(1) Y(2) Y(3)'

WRITE (NOUT,99996) X, (Y(I),I=1,N)
IFAIL = 0

CALL DOZCJF(X,XEND,N,Y,FCN,TOL,'Default',DOZCJX,DOZCJW,W,IFAIL)

WRITE (NOUT,99996) X, (Y(I),I=1,N)
CONTINUE
STOP

FORMAT (1X,A,e8.1)
FORMAT (1X,A,F7.3)
FORMAT (1X,A,3F13.5)
FORMAT (1X,F8.2,3F13.5)
END

SUBROUTINE OUT(X,Y)
Parameters ..

INTEGER NOUT

PARAMETER (NOUT=6)

INTEGER N

PARAMETER (N=3)
Scalar Arguments

real X

.. Array Arguments

real Y(N)
Scalars in Common ..

real H, XEND

INTEGER I

.. Local Scalars

INTEGER J

Page 7

D02CJF

D02CJF D02 - Ordinary Differential Equations

* .. Intrinsic Functions
INTRINSIC real

* .. Common blocks ..
COMMON XEND, H, I

* .. Executable Statements

WRITE (NOUT,99999) X, (Y¥(J),J=1,N)
X = XEND - real(I)x*H

I=1I-1

RETURN

99999 FORMAT (1X,F8.2,3F13.5)
END

SUBROUTINE FCN(T,Y,F)

* .. Parameters
INTEGER N
PARAMETER (N=3)
* .. Scalar Arguments
real T
* .. Array Arguments .
real F(N), Y(N)
* .. Intrinsic Functions
INTRINSIC COS, TAN
* .. Executable Statements
F(l) = TAN(Y(3))
F(2) = —-0.032e0*TAN(Y(3))/Y¥Y(2) - 0.02e0*Y(2)/COS(Y(3))
F(3) = -0.032e0/Y(2)*x*2
RETURN
END
*
real FUNCTION G(T,Y)
* .. Parameters
INTEGER N
PARAMETER (N=3)
* .. Scalar Arguments
real T
* .. Array Arguments
real Y(N)
* .. Executable Statements
G = Y(1)
RETURN
END

9.2. Program Data
None.

9.3. Program Results
DO2CJF Example Program Results
Case 1: intermediate output, root-finding

Calculation with TOL = 0.1E-03

X Y(1) Y(2) Y(3)
0.00 0.50000 0.50000 0.62832
2.00 1.54931 0.40548 0.30662
4.00 1.74229 0.37433 -0.12890
6.00 1.00554 0.41731 -0.55068
Root of Y(1) = 0.0 at 7.288
Solution is 0.00000 0.47486 -0.76011
Calculation with TOL = 0.1E-04
X Y(1) Y(2) Y(3)
0.00 0.50000 0.50000 0.62832
2.00 1.54933 0.40548 0.30662
4.00 1.74232 0.37433 -0.12891
6.00 1.00552 0.41731 -0.55069
Root of Y(1) = 0.0 at 7.288
Solution is 0.00000 0.47486 -0.76010

Page 8 [NP1692/14]

D02 - Ordinary Differential Equations

Case 2: no intermediate output,

Calculation with TOL = (0.1E-03

D02CJF

root-finding

Root of ¥(1) = 0.0 at 7.288
Solution is 0.00000 0.47486 -0.76011
Calculation with TOL = 0.1lE-04
Root of Y(1) = 0.0 at 7.288
Solution is 0.00000 0.47486 -0.76010
Case 3: intermediate output, no root-finding
Calculation with TOL = 0.1E-03
X Y(1) Y(2) Y(3)
0.00 0.50000 0.50000 0.62832
2.00 1.54931 0.40548 0.30662
4.00 1.74229 0.37433 -0.12890
6.00 1.00554 0.41731 -0.55068
8.00 -0.74589 0.51299 -0.85371
10.00 -3.62813 0.63325 -1.05152
Calculation with TOL = 0.1E-04
X Y(1) Y(2) Y(3)
0.00 0.50000 0.50000 0.62832
2.00 1.54933 0.40548 0.30662
4.00 1.74232 0.37433 -0.12891
6.00 1.00552 0.41731 -0.55069
8.00 -0.74601 0.51299 -0.85372
10.00 -3.62829 0.63326 -1.05153

Case 4: no intermediate output, no

Calculation with TOL = (0.1E-03

X Y(1) Y(2)
0.00 0.50000 0.50000
10.00 -3.62813 0.63325

Calculation with TOL = 0.1E-04

X Y(1) Y(2)
0.00 0.50000 0.50000
10.00 -3.62829 0.63326

root-£finding (integrate to XEND)

Y(3)
0.62832
-1.05152

Y(3)
0.62832
-1.05153

[NP1692/14]

Page 9 (last)

D02 - Ordinary Differential Equations DO2EJF

DO2EJF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

DO2EJF integrates a stiff system of first-order ordinary differential equations over an interval
with suitable initial conditions, using a variable-order, variable-step method implementing the
Backward Differentiation Formulae (BDF), until a user-specified function, if supplied, of the
solution is zero, and returns the solution at points specified by the user, if desired.

2. Specification
SUBROUTINE DO2EJF (X, XEND, N, Y, FCN, PEDERV, TOL, RELABS, OUTPUT,

1 G, W, IW, IFAIL)
INTEGER N, IW, IFAIL

real X, XEND, Y(N), TOL, G, W(IW)
CHARACTER*1 RELABS

EXTERNAL FCN, PEDERV, OUTPUT, G

3. Description :
The routine advances the solution of a system of ordinary differential equations

Yi = Fi Xy ya¥a)s 0= 12,.m,
from x = X tox = XEND using a variable-order, variable-step method implementing the BDF.
The system is defined by a subroutine FCN supplied by the user, which evaluates f; in terms of
x and y,,y,,...y, (see Section 5). The initial values of y,,y,,...,y, must be given at x = X.

The solution is returned via the user-supplied routine OUTPUT at points specified by the user, if
desired: this solution is obtained by C' interpolation on solution values produced by the method.
As the integration proceeds a check can be made on the user-specified function g(x,y) to
determine an interval where it changes sign. The position of this sign change is then determined
accurately by C' interpolation to the solution. It is assumed that g(x,y) is a continuous function
of the variables, so that a solution of g(x,y) = 0.0 can be determined by searching for a change
in sign in g(x,y). The accuracy of the integration, the interpolation and, indirectly, of the
determination of the position where g(x,y) = 0.0, is controlled by the parameters TOL and
RELABS. The Jacobian of the system y’ = f(x,y) may be supplied in routine PEDERYV, if it is
available.

For a description of BDF and their practical implementation see Hall and Watt [1].

4. References

[1] HALL, G. and WATT, J.M. (eds).
Modern Numerical Methods for Ordinary Differential Equations.
Clarendon Press, Oxford, 1976.

5. Parameters

1. X -—real Input/ Output
On entry: the initial value of the independent variable x.
Constraint: X # XEND

Onexit: if G is supplied by the user, X contains the point where g(x,y) = 0.0, unless
g(x,y) # 0.0 anywhere on the range X to XEND, in which case, X will contain XEND. If
G is not supplied X contains XEND, unless an error has occured, when it contains the value
of x at the error.

[NP1692/14] Page 1

DO2EJF - D02 — Ordinary Differential Equations

Page 2

XEND - real. Input

On entry: the final value of the independent variable. If XEND < X, integration proceeds in
the negative direction.

Constraint. XEND # X.

N — INTEGER. Input
On entry: the number of differential equations, n.
Constraint: N 2 1.

Y(N) - real array. Input/ Output
On entry: the initial values of the solution y,,y,,....y, atx = X.
On exit: the computed values of the solution at the final point x = X.

FCN — SUBROUTINE, supplied by the user. External Procedure
FCN must evaluate the functions f, (i.e. the derivatives y;) for given values of their
arguments X,y ;,Yz,.»Yn-

Its specification is:

SUBROUTINE FCN (X, Y, F)

real X, Y(n), F(n)
where n is the actual value of N in the call of DO2EJF.
1: X —real Input

On entry: the value of the independent variable x.

2 Y(n) - real array. Input
On entry: the value of the variable y;, for i = 1,2,...,n.

3: F(n) - real array. Output
Onexit: the value of f;, fori = 1,2,...,n.

FCN must be declared as EXTERNAL in the (sub)program from which DO2EJF is called.
Parameters denoted as Input must not be changed by this procedure.

PEDERYV - SUBROUTINE, supplied by the user. External Procedure

PEDERV must evaluate the Jacobian of the system (that is, the partial derivatives ;fyi) for
J

given values of the variables x,y,,y;,....Y,-
Its specification is:

SUBROUTINE PEDERV (X, Y, PW)
real X, Y(n), PW(n, n)
where n is the actual value of N in the call of DO2EJF.
1: X —real Input
On entry: the value of the independent variable x.
2: Y(n) — real array. Input
On entry: the value of the variable y,, for i = 1,2,...,n.

[NP1692/14)

D02 - Ordinary Differential Equations L DO2EJF

3: PW(n,n) — real array. Output

On exit: the value of %i, forij = 1,2,..n.
J

If the user does not wish to supply the Jacobian, the actual argument PEDERV must be the
dummy routine DO2EJY. (DO2EJY is included in the NAG Fortran Library and so need not
be supplied by the user. The name may be implementation dependent: see the Users’ Note
for your implementation for details.)

PEDERYV must be declared as EXTERNAL in the (sub)program from which DO2EJF is
called. Parameters denoted as /npur must not be changed by this procedure.

7: TOL — real. Input/ Output

On entry: TOL must be set to a positive tolerance for controlling the error in the integration.
Hence TOL affects the determination of the position where g(x,y) = 0.0, if G is supplied.

DO2EJF has been designed so that, for most problems, a reduction in TOL leads to an
approximately proportional reduction in the error in the solution. However, the actual
relation between TOL and the accuracy achieved cannot be guaranteed. The user is strongly
recommended to call DO2EJF with more than one value for TOL and to compare the results
obtained to estimate their accuracy. In the absence of any prior knowledge, the user might
compare the results obtained by calling DO2EJF with TOL = 107 and TOL = 107" if p
correct decimal digits are required in the solution.

Constraint: TOL > 0.0.

On exit: normally unchanged. However if the range X to XEND is so short that a small
change in TOL is unlikely to make any change in the computed solution, then, on return,
TOL has its sign changed.

8: RELABS — CHARACTER*1. Input

[NP1692/14]

On entry: the type of error control. At each step in the numerical solution an estimate of the
local error, EST, is made. For the current step to be accepted the following condition must
be satisfied:

EST = \/%Z(e,./(rrxlyihra))z < 1.0
=1

where 7, and 7, are defined by

RELABS T, T,
‘™M TOL TOL
Al 0.0 TOL
R’ TOL ¢
D' TOL ¢

where € is a small machine dependent number and e, is an estimate of the local error at y,,
computed internally. If the appropriate condition is not satisfied, the stepsize is reduced and
the solution is recomputed on the current step. If the user wishes to measure the error in the
computed solution in terms of the number of correct decimal places, then RELABS should
be set to ‘A’ on entry, whereas if the error requirement is in terms of the number of correct
significant digits, then RELABS should be set to 'R'. If the user prefers a mixed error test,
then RELABS should be set to 'M/, otherwise if the user has no preference, RELABS should
be set to the default 'D'. Note that in this case D' is taken to be R'.

Constraint: RELABS = A','M, 'R or D',

Page 3

DO02EJF

9:

10:

Page 4

D02 - Ordinary Differential Equations

OUTPUT - SUBROUTINE, supplied by the user. External Procedure

OUTPUT permits access to intermediate values of the computed solution (for example to
print or plot them), at successive user specified points. It is initially called by DO2EJF with
XSOL = X (the initial value of x). The user must reset XSOL to the next point (between
the current XSOL and XEND) where OUTPUT is to be called, and so on at each call to
OUTPUT. If, after a call to OUTPUT, the reset point XSOL is beyond XEND, DO2EJF will
integrate to XEND with no further calls to OUTPUT,; if a call to OUTPUT is required at the
point XSOL = XEND, then XSOL must be given precisely the value XEND.

Its specification is:

SUBROUTINE OUTPUT (XSOL, Y)

real XSOL, Y(n)
where n is the actual value of N in the call of DO2EJF.
1: XSOL - real. Input/ Output

On entry: the value of the independent variable x.

On exit: the user must set XSOL to the next value of x at which OUTPUT is to be
called.

2: Y(n) — real array. Input
On entry: the computed solution at the point XSOL.

If the user does not wish to access intermediate output, the actual argument OUTPUT must
be the dummy routine DO2EJX. (D02EJX is included in the NAG Fortran Library and so
need not be supplied by the user. The name may be implementation dependent: see the
Users’ Note for your implementation for details.)

OUTPUT must be declared as EXTERNAL in the (sub)program from which DO2EJF is
called. Parameters denoted as /nput must not be changed by this procedure.

G — real FUNCTION, supplied by the user. External Procedure

G must evaluate the function g(x,y) for specified values x,y. It specifies the function g for
which the first position x where g(x,y) = 0 is to be found.

Its specification is:

real FUNCTION G(X, Y)

real X, Y(n)
where n is the actual value of N in the call of DO2EJF.
I: X —real Input
On entry: the value of the independent variable x.
2: Y(n) - real array. Input

On entry: the value of the variable y;, for i = 1,2,...,n.

If the user does not require the root finding option, the actual argument G must be the
dummy routine DO2EJW. (DO2EJW is included in the NAG Fortran Library and so need
not be supplied by the user. The name may be implementation dependent: see the Users’
Note for your implementation for details.)

G must be declared as EXTERNAL in the (sub)program from which DO2EJF is called.
Parameters denoted as Input must not be changed by this procedure.

[NP1692/14]

D02 - Ordinary Differential Equations DO02EJF

11:
12:

13:

W(IW) - real array. Workspace
IW — INTEGER. Input

Onentry: the dimension of the array W as declared in the (sub)program from which
DO2EJF is called.

Constraint: IW 2 (12+N)xN + 50.

IFAIL — INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter P01) the recommended value is 0.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL = 1
On entry, TOL < 0.0,
or X = XEND,
or N £0,
or RELABS # 'M', 'A', 'R' or 'D',
or IW < (12+N)xN + 50.
IFAIL = 2

With the given value of TOL, no further progress can be made across the integration range
from the current point x = X. (See Section 5 for a discussion of this error test.) The
components Y (1),Y(2),...,Y (n) contain the computed values of the solution at the current
point x = X. If the user has supplied G, then no point at which g(x,y) changes sign has
been located up to the point x = X.

IFAIL = 3

TOL is too small for DOZEJF tc take an initial step. X and Y (1),Y(2),...,Y (n) retain their
initial values.

IFAIL = 4

XSOL lies behind X in the direction of integration, after the initial call to OUTPUT, if the
OUTPUT option was selected.

IFAIL = 5

A value of XSOL returned by OUTPUT lies behind the last value of XSOL in the direction
of integration, if the OUTPUT option was selected.

IFAIL = 6

At no point in the range X to XEND did the function g (x,y) change sign, if G was supplied.
It is assumed that g(x,y) = 0 has no solution.

IFAIL = 7 (CO05AZF)
IFAIL = 8 (D02XKF)
IFAIL = 9 (DO2NMF)

A serious error has occurred in an internal call to the specified routine. Check all subroutine
calls and array sizes. Seek expert help.

[NP2834117] Page 5

DO2EJF D02 - Ordinary Differential Equations

7.

9.1.

Page 6

Accuracy

The accuracy of the computation of the solution vector Y may be controlled by varying the local
error tolerance TOL. In general, a decrease in local error tolerance should lead to an increase in
accuracy. Users are advised to choose RELABS = 'R' unless they have a good reason for a
different choice. It is particularly appropriate if the solution decays.

If the problem is a root-finding one, then the accuracy of the root determined will depend
og og) . .
strongly on E and - fori = 1,2...,n. Large values for these quantities may imply large errors
Wi

in the root.

Further Comments

If more than one root is required, then to determine the second and later roots DOZEJF may be
called again starting a short distance past the previously determined roots. Alternatively the user
may construct his own root finding code using DO2NBF (and other routines of the subchapter
D02M-D02N), DO2XKF and CO5AZF.

If it is easy to code, the user should supply the routine PEDERV. However, it is important to be
aware that if PEDERYV is coded incorrectly, a very inefficient integration may result and possibly
even a failure to complete the integration (IFAIL = 2).

Example

We illustrate the solution of five different problems. In each case the differential system is the
well-known stiff Robertson problem.

a' = -0.04a + 10*hc

b' = 0.04a - 10°bc - 3x1075°

¢ = 3x107?
with initial conditions @ = 1.0, » = ¢ = 0.0 at x = 0.0. We solve each of the following
problems with local error tolerances 1.0E-3 and 1.0E-4.

(i) To integrate to x = 10.0 producing output at intervals of 2.0 until a point is encountered
where a = 0.9. The Jacobian is calculated numerically.
(ii) As (i) but with the Jacobian calculated analytically.
(iii) As (i) but with no intermediate output.
(iv) As (i) but with no termination on a root-finding condition.
(v) Integrating the equations as in (i) but with no intermediate output and no root-finding
termination condition.

Program Text
Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read

the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO2EJF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER N, IW
PARAMETER (N=3,IW=(12+N)*N+50)
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalars in Common ..
real H, XEND
INTEGER K
* .. Local Scalars
real TOL, X
INTEGER I, IFAIL, J
* .. Local Arrays ..
real W(IW), Y(N)
* .. External Functions ..
real DO2EJW, G
EXTERNAL DO2EJW, G

[NP2834117)

D02 - Ordinary Differential Equations v DO02EJF

.. External Subroutines ..

EXTERNAL DO2EJF, DO2EJX, DO2EJY, FCN, OUT, PEDERV
.. Intrinsic Functions ..

INTRINSIC real

.. Common blocks ..

COMMON XEND, H, K

.. Executable Statements ..
WRITE (NOUT,*) ’‘DO2EJF Example Program Results’
XEND = 10.0e0
WRITE (NOUT, *)
WRITE (NOUT,*) ’‘Case 1: calculating Jacobian internally,’
WRITE (NOUT,*) ’ intermediate output, root-finding’
DO 20 g = 3, 4
TOL = 10.0e0**(-J)
WRITE (NOUT, *)
WRITE (NOUT,99999) ’ Calculation with TOL =/, TOL
X = 0.0e0
Y(1) = 1.0e0
Y(2) = 0.0e0

Y(3) = 0.0e0

K = 4

H = (XEND-X)/real(K+1)

WRITE (NOUT,*) ’ X Y(1) Y(2) Y(3)’
IFAIL = 0

CALL DO2EJF(X,XEND,N,Y,FCN,DO2EJY, TOL, 'Default’,OUT, G, W, IW,

+ IFAIL)

WRITE (NOUT, 99998) Root of Y(1)-0.9 at’, X
WRITE (NOUT,99997) ’ Solution is’, (Y¥(I),I=1,N)
IF (TOL.LT.0.0e0) WRITE (NOUT, %) * Range too short for TOL’

20 CONTINUE

WRITE (NOUT, *)
WRITE (NOUT, *)
WRITE (NOUT,*) ’Case 2: calculating Jacobian by PEDERV,’
WRITE (NOUT,*) ’ intermediate output, root-finding’
DO 40 g = 3, 4

TOL = 10.0e0**(-J)

WRITE (NOUT, *)

WRITE (NOUT,99999) ’ Calculation with TOL =/, TOL

X = 0.0e0

Y(1) = 1.0e0

Y(2) = 0.0e0

Y(3) = 0.0e0

K= 4

H = (XEND-X) /real(K+1)

WRITE (NOUT,*) ’ X Y(1) Y(2) Y(3)’
IFAIL = 0

CALL DO2EJF(X,XEND,N,Y,FCN, PEDERV, TOL, ' Default’,OUT, G, W, IW,

+ IFAIL)

WRITE (NOUT, 99998) Root of ¥(1)-0.9 at’, X
WRITE (NOUT,99997) ’ Solution is’, (Y(I),I=1,N)
IF (TOL.LT.0.0e0) WRITE (NOUT,*) ' Range too short for TOL’

40 CONTINUE

[NP1692/14]

WRITE (NOUT, *)
WRITE (NOUT, x)
WRITE (NOUT,*) ’‘Case 3: calculating Jacobian internally,’
WRITE (NOUT,*) ’ no intermediate output, root-finding’
DO 60 g = 3, 4

TOL = 10.0e0**(~-J)

WRITE (NOUT, *)

WRITE (NOUT, 99999) ’ Calculation with TOL =’, TOL

X = 0.0e0

Y(1) = 1.0e0
Y(2) = 0.0e0
Y(3) = 0.0e0
IFAIL = 0

Page 7

DO02EJF

60

80

100

99999
99998
99997
99996

Page 8

DO2 — Ordinary Differential Equations

CALL DO2EJF (X, XEND,N,Y,FCN,DO2EJY, TOL, ' Default’,h DO2EJX, G, W, IW,
+ IFAIL)

WRITE (NOUT,99998) ' Root of ¥Y(1)-0.9 at’, X

WRITE (NOUT,99997) ’ Solution is’, (Y(I),I=1,N)

IF (TOL.LT.0.0e0) WRITE (NOUT, *) ' Range too short for TOL’
CONTINUE
WRITE (NOUT, *)
WRITE (NOUT, *)
WRITE (NOUT,=*) ’Case 4: calculating Jacobian internally,’
WRITE (NOUT,*) ’ intermediate output, no root-£finding’
DO 80 J = 3, 4

TOL = 10.0e0**(-J)

WRITE (NOUT, *)

WRITE (NOUT,99999) ’ Calculation with TOL =’, TOL

X = 0.0e0

Y(1) = 1.0e0

Y(2) = 0.0e0

Y(3) = 0.0e0

K =4

H = (XEND—X)/real(K+1)

WRITE (NOUT,=*) ’ X Y(1) Y(2) Y(3)
IFAIL = 0

CALL DO2EJF(X,XEND,N,Y,FCN,D02EJY, TOL, 'Default’,OUT,DO2EJW, W,
+ IW, IFAIL)

IF (TOL.LT.0.0e0) WRITE (NOUT,*) ' Range too short for TOL'
CONTINUE
WRITE (NOUT, *)
WRITE (NOUT, *)
WRITE (NOUT,*) ‘Case 5: calculating Jacobian internally,’
WRITE (NOUT, *)
+ ' no intermediate output, no root-finding (integrate to XEND) '’
DO 100 0 = 3, 4

TOL = 10.0e0**(-J)

WRITE (NOUT, *)

WRITE (NOUT, 99999) ' Calculation with TOL =’, TOL

X = 0.0e0

Y(1) = 1.0e0

Y(2) = 0.0e0

Y(3) = 0.0e0

WRITE (NOUT,*) ’ X Y(1) Y(2) Y(3)’
WRITE (NOUT,99996) X, (Y(I),I=1,N)

IFAIL = 0

CALL DO2EJF (X,XEND,N,Y,FCN,D02EJY, TOL, ' Default’,D02EJX, DOZEJW,
+ W, IW, IFAIL)

WRITE (NOUT,99996) X, (¥(I),I=1,N)

IF (TOL.LT.0.0e0) WRITE (NOUT,*) ’ Range too short for TOL’
CONTINUE
STOP

FORMAT (1X,A,e8.1)
FORMAT (1X,A,F7.3)
FORMAT (1X,A,3F13.5)
FORMAT (1X,F8.2,3F13.5)
END

SUBROUTINE FCN(T,Y,F)

.. Parameters

INTEGER N
PARAMETER (N=3)

.. Scalar Arguments ..
real T

.. Array Arguments ..

real F(N), Y(N)

[NP1692/14]

D02 - Ordinary Differential Equations

99999

[NP1692/14)

.. Executable Statements

F(1) = -0.04e0%Y(1) + 1.0ed*Y(2)*Y(3)
F(2) = 0.04e0*Y(1) - 1.0e4*Y(2)*Y(3) — 3.0e7+Y(2)*Y(2)

F(3) = 3.0e7*Y(2)*Y(2)

RETURN
END
SUBROUTINE PEDERV(X,Y,PW)
.. Parameters
INTEGER N
PARAMETER (N=3)
Scalar Arguments
real X
. Array Arguments
real PW(N,N), Y(N)
.. Executable Statements
PW(1,1) = -0.04e0
PW(1,2) = 1.0e4*Y(3)
PW(1l,3) = 1.0e4*Y(2)
PW(2,1) = 0.04e0
PW(2,2) = -1.0e4*Y(3) - 6.0e7*Y(2)
PW(2,3) = —1.0e4*Y(2)
PW(3,1) = 0.0e0
PW(3,2) = 6.0e7*xY(2)
PW(3,3) = 0.0e0
RETURN
END
real FUNCTION G(T,Y)
.. Parameters
INTEGER N
PARAMETER (N=3)
Scalar Arguments
real T
. Array Arguments
real Y(N)
Executable Statements
G = Y(1) — 0.9e0
RETURN
END
SUBROUTINE OUT(X,Y)
Parameters
INTEGER N
PARAMETER (N=3)
INTEGER NOUT
PARAMETER (NOUT=6)
.. Scalar Arguments
real X
. Array Arguments
real Y(N)
Scalars in Common ..
real H, XEND
INTEGER I

Local Scalars

INTEGER

J

.. Intrinsic Functions
INTRINSIC
Common blocks

COMMON

real

XEND, H, I

Executable Statements ..

WRITE (NOUT,99999) X,

X = XEND - real(I)*H

I=1-
RETURN

1

FORMAT (1X,F8.2,3F13.5)

END

(Y(J),J=1,N)

DO2EJF

Page 9

DO2EJF D02 — Ordinary Differential Equations

9.2. Program Data
None.

9.3. Program Results
DO2EJF Example Program Results

Case 1l: calculating Jacobian internally,
intermediate output, root-finding

Calculation with TOL = 0.1E-02

X Y(1) Y(2) Y(3)
0.00 1.00000 0.00000 0.00000
2.00 0.94163 0.00003 0.05835
4.00 0.90551 0.00002 0.09447
Root of Y(1)-0.9 at 4.377
Solution is 0.90000 0.00002 0.09998
Calculation with TOL = 0.1E-03
X Y(1) Y(2) Y(3)
0.00 1.00000 0.00000 0.00000
2.00 0.94161 0.00003 0.05837
4.00 0.90551 0.00002 0.09446
Root of Y(1)-0.9 at 4.377
Solution is 0.90000 0.00002 0.09998

Case 2: calculating Jacobian by PEDERV,
intermediate output, root-finding

Calculation with TOL = 0.1E-02

X Y(1) Y(2) Y(3)
0.00 1.00000 0.00000 0.00000
2.00 0.94163 0.00003 0.05835
4.00 0.90551 0.00002 0.09447
Root of Y(1)-0.9 at 4.377
Solution is 0.90000 0.00002 0.09998
Calculation with TOL = 0.1E-03
X Y(1) Y(2) Y(3)
0.00 1.00000 0.00000 0.00000
2.00 0.94161 0.00003 0.05837
4.00 0.90551 0.00002 0.09446
Root of Y(1)-0.9 at 4.377
Solution is 0.90000 0.00002 0.09998

Case 3: calculating Jacobian internally,
no intermediate output, root-finding

Calculation with TOL = 0.1E-02
Root of Y(1)-0.9 at 4.377
Solution is 0.90000 0.00002 0.09998

Calculation with TOL = 0.1E-03

Root of Y(1)-0.9 at 4.377
Solution is 0.90000 0.00002 0.09998

Page 10

D02 - Ordinary Differential Equations DO2EJF

Case 4: calculating Jacobian internally,
intermediate output, no root-finding

Calculation with TOL = 0.1E-02

X Y(1) Y(2) Y(3)
0.00 1.00000 0.00000 0.00000
2.00 0.94163 0.00003 0.05835
4.00 0.90551 0.00002 0.09447
6.00 0.87929 0.00002 0.12069
8.00 0.85858 0.00002 0.14141

10.00 0.84136 0.00002 0.15862
Calculation with TOL = 0.1E-03

X Y(1) Y(2) Y(3)
0.00 1.00000 0.00000 0.00000
2,00 0.94161 0.00003 0.05837
4.00 0.90551 0.00002 0.09446
6.00 0.87926 0.00002 0.12072
8.00 0.85854 0.00002 0.14145

10.00 0.84136 0.00002 0.15863

Case 5: calculating Jacobian internally,
no intermediate output, no root-finding (integrate to XEND)

Calculation with TOL = 0.1E-02

X Y(1) Y(2) Y(3)
0.00 1.00000 0.00000 0.00000
10.00 0.84136 0.00002 0.15862
Calculation with TOL = 0.1E-03
X Y(1) Y(2) Y(3)
0.00 1.00000 0.00000 0.00000
10.00 0.84136 0.00002 0.15863

[NP1692/14) Page 11 (last)

D02 - Ordinary Differential Equations D02GAF

DO02GAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

w

Purpose

DO2GAF solves the two-point boundary-value problem with assigned boundary values for a
system of ordinary differential equations, using a deferred correction technique and a Newton
iteration.

Specification
SUBROUTINE DO2GAF (U, V, N, A, B, TOL, FCN, MNP, X, Y, NP, W, LW,
1 IW, LIW, IFAIL)
INTEGER N, MNP, NP, LW, IW(LIW), LIW, IFAIL
real U(N,2), V(N,2), A, B, TOL, X(MNP), Y(N,MNP),
1 W(LW)
EXTERNAL FCN
Description

DO02GAF solves a two-point boundary-value problem for a system of » differential equations in
the interval [a,b]. The system is written in the form

y; =fi(x’yl'y2"":yn)s l = 1,2,...,” (1)

and the derivatives are evaluated by a subroutine FCN supplied by the user. Initially, n boundary
values of the variables y, must be specified (assigned), some at g and some at b. The user also
supplies estimates of the remaining » boundary values and all the boundary values are used in
constructing an initial approximation to the solution. This approximate solution is corrected by a
finite-difference technique with deferred correction allied with a Newton iteration to solve the
finite-difference equations. The technique used is described fully in Pereyra [1]. The Newton

of:
iteration requires a Jacobian matrix % and this is calculated by numerical differentiation using
J
an algorithm described in Curtis, et al. [2].

The user supplies an absolute error tolerance and may also supply an initial mesh for the
construction of the finite-difference equations (alternatively a default mesh is used). The
algorithm constructs a solution on a mesh defined by adding points to the initial mesh. This
solution is chosen so that the error is everywhere less than the user’s tolerance and so that the
error is approximately equidistributed on the final mesh. The solution is returned on this final
mesh.

If the solution is required at a few specific points then these should be included in the initial
mesh. If on the other hand the solution is required at several specific points then the user should
use the interpolation routines provided in the EO1 chapter if these points do not themselves form
a convenient mesh.

References

[1] PEREYRA, V.
PASVA3: An Adaptive Finite-Difference Fortran Program for First Order Nonlinear,
Ordinary Boundary Problems.
In: ‘Codes for Boundary Value Problems in Ordinary Differential Equations’,
B. Childs, M. Scott, J.W. Daniel, E. Denman and P. Nelson. (eds.)
Springer-Verlag, Lecture Notes in Computer Science, 76, 1979.

[2] CURTIS, AR., POWELL, M.J.D. and REID, J K.
On The Estimation of Sparse Jacobian Matrices.
J. Inst. Maths. Applics, 13, pp. 117-119. 1974.

[NP1692/14] Page 1

DO02GAF DO2 - Ordinary Differential Equations

7:

Parameters
U(N,2) — real array. Input

Onentry: U(i,1) must be set to the known (assigned) or estimated values of y; at @ and
U(i,2) must be set to the known or estimated values of y; at b, fori = 1,2,....n.

V(N,2) — real array. Input

On entry: V(i,j) must be set to 0.0 if U(i,j) is a known (assigned) value and to 1.0 if U(i,j)
is an estimated value, i = 1,2,...n; j = 1,2

Constraint: precisely N of the V(i,j) must be set to 0.0, i.e. precisely N of the U(i,j) must
be known values, and these must not be all at g or all at b.

N — INTEGER. Input
On entry: the number of equations.
Constraint: N 2 2.

A —real. Input
On entry: the left-hand boundary point, a.

B - real. Input
On entry: the right-hand boundary point, b.
Constraint: B > A,

TOL - real. Input
On entry: a positive absolute error tolerance. If
a=x <x3<..<xp=0b

is the final mesh, z; (x) is the jth component of the approximate solution at x;, and y;(x)
is the jth component of the true solution of equanon (1) (see Section 3) and the boundary
conditions, then, except in extreme cases, it is expected that

|zj(x,.)—yj(x,-)| < TOL, i=12,.,NP;j=12,...,n. (2)
Constraint. TOL > 0.0.

FCN — SUBROUTINE, supplied by the user. External Procedure
FCN must evaluate the functions f; (i.e. the derivatives y;) at the general point x.
Its specification is:

SUBROUTINE FCN(X, Y, F) |
real X, Y(n), F(n)
where n is the actual value of N in the call of DO2GAF.
1: X -real Input
On entry: the value of the argument x.
2: Y(n) - real array. Input
On entry: the value of the argument y,, for i = 1,2,...,n.
3: F(n) — real array. Output
On exit: the values of f;, fori = 1,2,...,n.

FCN must be declared as EXTERNAL in the (sub)program from which DO2GAF is called.
Parameters denoted as Input must not be changed by this procedure.

Page 2 [NP1692/14]

DQ2 - Ordinary Differential Equations D02GAF

10:

11:

12:
13:

14:
15:

16:

MNP - INTEGER. Input
On entry: the maximum permitted number of mesh-points.
Constraint: MNP 2 32.

X(MNP) — real array. Input/ Output
Onentry: if NP 2 4 (see NP below), the first NP elements must define an initial mesh.
Otherwise the elements of X need not be set.

Constraint: A = X(1) < X(2) < ... < X(NP) = Bfor NP 2 4 3)
Onexit: X(1),X(2),...X(NP) define the final mesh (with the returned value of NP)
satisfying the relation (3).

Y(N,MNP) - real array. Output
On exit: the approximate solution z;(x;) satisfying (2), on the final mesh, that is
Y@.i) = z;(x)), i=12.,NP;j=12,.,n,

where NP is the number of points in the final mesh.
The remaining columns of Y are not used.

NP — INTEGER. Input/ Output

On entry: determines whether a default or user-supplied mesh is used. If NP = 0, a default
value of 4 for NP and a corresponding equispaced mesh X(1),X(2),....X(NP) are used. If
NP 2 4, then the user must define an initial mesh using the array X as described.

Constraint: NP = 0 or 4 £ NP £ MNP.
On exit: the number of points in the final (returned) mesh.

W(LW) — real array. Workspace
LW — INTEGER. Input

On entry: the length of the array W as declared in the calling (sub)program.
Constraint: LW 2 MNPX(3N2+6N+2) + 4N? + 4N

IW(LIW) — INTEGER array. Workspace
LIW — INTEGER. Input

On entry: the length of the array IW as declared in the calling (sub)program.
Constraint: LIW 2 MNPX(2N+1) + N? + 4N + 2.

IFAIL — INTEGER. Input/ Output

For this routine, the normal use of IFAIL is extended to control the printing of error and
warning messages as well as specifying hard or soft failure (see Chapter PO1 for details).

Before entry, IFAIL must be set to a value with the decimal expansion cba, where each of
the decimal digits ¢, b and @ must have the value O or 1.

a = 0 specifies hard failure, otherwise soft failure;
b = 0 suppresses error messages, otherwise error messages will be printed (see Section 6);

¢ = 0 suppresses warning messages, otherwise warning messages will be printed (see
Section 6).

The recommended value for inexperienced users is 110 (i.e. hard failure with all messages
printed).
Unless the routine detects an error (see Section 6), IFAIL contains 0 on exit.

[NP1692/14] Page 3

D02GAF D02 - Ordinary Differential Equations

6. Error Indicators and Warnings
Errors detected by the routine:

For each error, an explanatory error message is output on the current error message unit (as
defined by X04AAF), unless suppressed by the value of IFAIL on entry.

IFAIL = 1

One or more of the parameters N, TOL, NP, MNP, LW or LIW has been incorrectly set, or
B < A, or the condition (3) on X is not satisfied, or the number of known boundary values
(specified by V) is not N.

IFAIL = 2

The Newton iteration has failed to converge. This could be due to there being too few points
in the initial mesh or to the initial approximate solution being too inaccurate. If this latter
reason is suspected the user should use subroutine DO2RAF instead. If the warning
‘Jacobian matrix is singular’ is printed this could be due to specifying zero estimated
boundary values and these should be varied. This warning could also be printed in the
unlikely event of the Jacobian matrix being calculated inaccurately. If the user cannot make
changes to prevent the warning then subroutine DO2RAF should be used.

IFAIL = 3

The Newton iteration has reached roundoff level. It could be, however, that the answer
returned is satisfactory. This error might occur if too much accuracy is requested.

IFAIL = 4
A finer mesh is required for the accuracy requested; that is MNP is not large enough.

IFAIL = 5

A serious error has occurred in a call to DO2GAF. Check all array subscripts and subroutine
parameter lists in calls to DO2GAF. Seek expert help.

7. Accuracy

The solution returned by the routine will be accurate to the user’s tolerance as defined by the
relation (2) except in extreme circumstances. If too many points are specified in the initial mesh,
the solution may be more accurate than requested and the error may not be approximately
equidistributed.

8. Further Comments

The time taken by the routine depends on the difficulty of the problem, the number of mesh
points used (and the number of different meshes used), the number of Newton iterations and the
number of deferred corrections.

The user is strongly recommended to set IFAIL to obtain self-explanatory error messages, and
also monitoring information about the course of the computation. The user may select the
channel numbers on which this output is to appear by calls of X04AAF (for error messages) or
XO04ABF (for monitoring information) — see Section 9 for an example. Otherwise the default
channel numbers will be used, as specified in the implementation document.

A common cause of convergence problems in the Newton iteration is the user specifying too few
points in the initial mesh. Although the routine adds points to the mesh to improve accuracy it is
unable to do so until the solution on the initial mesh has been calculated in the Newton iteration.

If the user specifies zero known and estimated boundary values, the routine constructs a zero
initial approximation and in many cases the Jacobian is singular when evaluated for this
approximation, leading to the breakdown of the Newton iteration.

The user may be unable to provide a sufficiently good choice of initial mesh and estimated
boundary values, and hence the Newton iteration may never converge. In this case the
continuation facility provided in DO2RAF is recommended.

Page 4 [NP1692114)

D02 — Ordinary Differential Equations DO02GAF

9.1.

In the case where the user wishes to solve a sequence of similar problems, the final mesh from
solving one case is strongly recommended as the initial mesh for the next.

Example
We solve the differential equation
y"' -),yn — ﬂ(l'—y'z)

with boundary conditions
y(0) =y(0) =0, »'(10) =1
for B = 0.0 and B = 0.2 to an accuracy specified by TOL = 1.0E-3. We solve first the simpler

problem with 8 = 0.0 using an equi-spaced mesh of 26 points and then we solve the problem
with B = 0.2 using the final mesh from the first problem.

Note the call to X04ABF prior to the call to DO2GAF.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO2GAF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters
INTEGER N, MNP, LW, LIW
PARAMETER (N=3,MNP=40, LW=MNP* (3*N*N+6*N+2)+4*N*N+4*N,
+ LIW=MNP* (2*N+1) +N*N+4*N+2)
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalars in Common
real BETA
* .. Local Scalars ..
real A, B, TOL
INTEGER I, IFAIL, J, K, NP
* .. Local Arrays ..
real U(N,2), V(N,2), W(LW), X(MNP), Y(N,MNP)
INTEGER IW(LIW)
* .. External Subroutines .
EXTERNAL DO2GAF, FCN, XO04ABF
* .. Intrinsic Functions
INTRINSIC real
* .. Common blocks
COMMON BETA
* .. Executable Statements

WRITE (NOUT,*) ‘DO2GAF Example Program Results’
TOL = 1.0e-3

NP = 26
A = 0.0e0
B = 10.0e0

CALL XO04ABF(1,NOUT)
BETA = 0.0e0
DO 40 I =1, N
DO 20 g =1, 2
U(1,J) = 0.0e0
V(I,J) = 0.0e0
20 CONTINUE
40 CONTINUE

V(3,1) = 1.0e0
V(1,2) = 1.0e0
vV(3,2) = 1.0e0
U(2,2) = 1.0e0
U(1l,2) =B
X(1l) = A
DO 60 I = 2, NP - 1
X(I) = (real(Np-I)x*A+real(I-1)*B) /real(NP-1)

60 CONTINUE

[NP1692/ 14} Page 5

D02GAF DO2 - Ordinary Differential Equations

9.2.

9.3.

Page 6

X(NP) =B
DO 80 K=1, 2
WRITE (NOUT, *)
WRITE (NOUT,99999) ’‘Problem with BETA = ’, BETA
* * Set IFAIL to 111 to obtain monitoring information *
IFAIL = 11

CALL DO2GAF(U,V,N,A,B,TOL, FCN, MNP, X, Y,NP,W, LW, IW, LIW, IFAIL)

IF (IFAIL.EQ.O0 .OR. IFAIL.EQ.3) THEN
WRITE (NOUT, *)
IF (IFAIL.EQ.3) WRITE (NOUT,99996) ’ IFAIL = ', IFAIL
WRITE (NOUT,99998) ’Solution on final mesh of ’, NP,

+ !’ points’
WRITE (NOUT, x)
+ ’ X(I) Y1(I) Y2(I) Y3(I)’

WRITE (NOUT,99997) (X(I),(Y¥(J,I),J=1,N),I=1,NP)
BETA = BETA + 0.2e0
ELSE
STOP
END IF
80 CONTINUE
STOP

99999 FORMAT (1X,A,F7.2)
99998 FORMAT (1X,A,I2,A)
99997 FORMAT (1X,F11.3,3F13.4)
99996 FORMAT (1X,A,I3)

END

SUBROUTINE FCN(X,Y,F)
* .. Parameters ..
INTEGER N
PARAMETER (N=3)
* .. Scalar Arguments
real X
* .. Array Arguments ..
real F(N), Y(N)
* .. Scalars in Common ..
real BETA
* .. Common blocks
COMMON BETA
* .. Executable Statements
F(1l) Y(2)
F(2) Y(3)
F(3) -Y(1)*Y(3) — BETA*(1.0e0-Y(2)*Y(2))
RETURN
END

Program Data
None.

Program Results
DO2GAF Example Program Results

Problem with BETA = 0.00

Solution on final mesh of 26 points
X(I) Y1(1) Y2(I) Y3(I)
0.000 0.0000 0.0000 0.4695
0.400 0.0375 0.1876 0.4673 \
0.800 0.1497 0.3719 0.4511
1.200 0.3336 0.5450 0.4104
1.600 0.5828 0.6963 0.3424
2.000 0.8864 0.8163 0.2558
2.400 1.2309 0.9009 0.1678
2.800 1.6026 0.9529 0.0953
3.200 1.9900 0.9805 0.0464

[NP1692/14]

DO02 - Ordinary Differential Equations

3.600 2.3851 0.9930
4.000 2.7834 0.9978
4.400 3.1829 0.9994
4.800 3.5828 0.9999
5.200 3.9828 1.0000
5.600 4.3828 1.0000
6.000 4.7828 1.0000
6.400 5.1828 1.0000
6.800 5.5828 1.0000
7.200 5.9828 1.0000
7.600 6.3828 1.0000
8.000 6.7828 1.0000
8.400 7.1828 1.0000
8.800 7.5828 1.0000
9.200 7.9828 1.0000
9.600 8.3828 1.0000
10.000 8.7828 1.0000
Problem with BETA = 0.20
Solution on final mesh of 26 points
X(I) Y1(I) Y2(1I)
0.000 0.0000 0.0000
0.400 0.0528 0.2584
0.800 0.2020 0.4814
1.200 0.4324 0.6636
1.600 0.7268 0.8007
2.000 1.0670 0.8939
2.400 1.4368 0.9498
2.800 1.8233 0.9791
3.200 2.2180 0.9924
3.600 2.6162 0.9976
4.000 3.0157 0.9993
4.400 3.4156 0.9998
4.800 3.8155 1.0000
5.200 4.2155 1.0000
5.600 4.6155 1.0000
6.000 5.0155 1.0000
6.400 5.4155 1.0000
6.800 5.8155 1.0000
7.200 6.2155 1.0000
7.600 6.6155 1.0000
8.000 7.0155 1.0000
8.400 7.4155 1.0000
8.800 7.8155 1.0000
9.200 8.2155 1.0000
9.600 8.6155 1.0000
10.000 9.0155 1.0000

0.0193
0.0069
0.0021
0.0006
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

Y3(I)
0.6865
0.6040
0.5091
0.4001
0.2860
0.1821
0.1017
0.0492
0.0206
0.0074
0.0023
0.0006
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

D02GAF

With IFAIL set to 111 in the example program, monitoring information similar to the following
is printed when BETA = 0.0:

DO2GAF MONITORING INFORMATION

MONITORING NEWTON ITERATION

CORRECTION
ITERATION
ITERATION
ITERATION
ITERATION

NUMBER 0
NUMBER 0
NUMBER 1
NUMBER 2

NUMBER 3

RESIDUAL
RESIDUAL
RESIDUAL
RESIDUAL
RESIDUAL

NUMBER OF POINTS IN CURRENT MESH =

CORRECTION NUMBER 0
ESTIMATED ERROR BY COMPONENTS
1.68E-02 5.45E-03 2.60E-03

[NP1692/14]

ESTIMATED

SHOULD BE .LE. 1.60E-02

1.17E+00

2.04E-01

2.45E-02

7.57E-04
26

MAXIMUM ERROR = 1.68E-02

Page 7

D02GAF DQ2 - Ordinary Differential Equations

MONITORING NEWTON ITERATION
CORRECTION NUMBER 1 RESIDUAL SHOULD BE .LE. 1.68E-05

ITERATION NUMBER 0 RESIDUAL = 4.00E-03
ITERATION NUMBER 1 RESIDUAL = 2.18E-04
ITERATION NUMBER 2 RESIDUAL = 9.40E-06
NUMBER OF POINTS IN CURRENT MESH = 26
CORRECTION NUMBER 1 ESTIMATED MAXIMUM ERROR = 5.96E-04

ESTIMATED ERROR BY COMPONENTS
5.96E-04 3.11E-04 2.22E-04

Page 8 (last) [NP1692/14}

D02 — Ordinary Differential Equations D02GBF

DO02GBF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and

other i

1 tion-dependent details. The routine name may be precision-dependent.

1

Purpose

DO2GBF solves a general linear two-point boundary value problem for a system of ordinary
differential equations using a deferred correction technique.

Specification
SUBROUTINE DO2GBF (A, B, N, TOL, FCNF, FCNG, C, D, GAM, MNP, X, Y,
1 NP, W, LW, IW, LIW, IFAIL)
INTEGER N, MNP, NP, LW, IW(LIW), LIW, IFAIL
real A, B, TOL, C(N,N), D(N,N), GAM(N), X(MNP),
1 Y(N,MNP), W(LW)
EXTERNAL FCNF, FCNG
Description

DO02GBF solves the linear two-point boundary value problem for a system of n ordinary
differential equations in the interval [a,b]. The system is written in the form

y' =Fx)y + gx) (1)
and the boundary conditions are written in the form
Cy(a) + Dy(b) = v (2)

Here F(x), C and D are n by n matrices, and g(x) and y are n-component vectors. The
approximate solution to (1) and (2) is found using a finite-difference method with deferred
correction. The algorithm is a specialisation of that used in subroutine DO2RAF which solves a
nonlinear version of (1) and (2). The nonlinear version of the algorithm is described fully in
Pereyra [1].

The user supplies an absolute error tolerance and may also supply an initial mesh for the
construction of the finite-difference equations (alternatively a default mesh is used). The
algorithm constructs a solution on a mesh defined by adding points to the initial mesh. This
solution is chosen so that the error is everywhere less than the user’s tolerance and so that the
error is approximately equidistributed on the final mesh. The solution is returned on this final
mesh.

If the solution is required at a few specific points then these should be included in the initial
mesh. If, on the other hand, the solution is required at several specific points, then the user should
use the interpolation routines provided in the EO1 chapter if these points do not themselves form
a convenient mesh.

References

[1] PEREYRA, V.
PASVA3: An Adaptive Finite-Difference Fortran Program for First Order
Nonlinear, Ordinary Boundary Problems.
In: ‘Codes for Boundary Value Problems in Ordinary Differential Equations’,
B. Childs, M. Scott, J.W. Daniel, E. Denman and P. Nelson, P. (eds.)
Springer-Verlag, Lecture Notes in Computer Science, 76, 1979.

Parameters
A —real. Input
On entry: the left-hand boundary point, a.

[NP1692/14] Page 1

D02GBF D02 - Ordinary Differential Equations

22 B -real Input
On entry: the right-hand boundary point, b.
Constraint: B > A.

w

N - INTEGER. Input
On entry: the number of equations; that is » is the order of system (1).
Constraint: N 2 2.

4 TOL - real. Input
On entry: a positive absolute error tolerance. If
a=x, <x,<..<xgp=b
is the final mesh, z(x) is the approximate solution from D02GBF and y(x) is the true
solution of equations (1) and (2) then, except in extreme cases, it is expected that
lz=yll £ TOL (3)
where
lull = max max |u,(x))|.
1SiSN 1S/SNP
Constraint: TOL > 0.0.
5: FCNF — SUBROUTINE, supplied by the user. External Procedure
FCNF must evaluate the matrix F(x) in (1) at a general point x.
Its specification is:
SUBROUTINE FCNF (X, F)
real X, F(n,n)
where n is the actual value of N in the call of DO2GBF.
11 X -real Input
On entry: the value of the independent variable x.
2: F(n,n) — real array. Output
On exit: the (i,j)th element of the matrix F(x), for ij = 1,2,...,n. (See Section 9
for an example.)
FCNF must be declared as EXTERNAL in the (sub)program from which DO2GBF is
called. Parameters denoted as /nput must not be changed by this procedure.
6: FCNG — SUBROUTINE, supplied by the user. External Procedure

FCNG must evaluate the vector g(x) in (1) at a general point x.
Its specification is:

SUBROUTINE FCNG(X, G)
real X, G(n)
where n is the actual value of N in the call of DO2GBF.
I: X -—real. Input
On entry: the value of the independent variable x.
2: G(n) — real array. Output
On exit: the ith element of the vector g(x), fori = 1,2,...,n. (See Section 9 for an
example.)

FCNG must be declared as EXTERNAL in the (sub)program from which DO2GBF is
called. Parameters denoted as /nput must not be changed by this procedure.

Page 2 [NP1692/14)

D02 — Ordinary Differential Equations D02GBF

7: C(N,N) — real array. Input/ OQutput
8: D(N,N) - real array. Input/ Output
9: GAM(N) - real array. Input/ Output

On entry: the arrays C and D must be set to the matrices C and D in (2). GAM must be set
to the vector ¥ in (2).

Onexit: the rows of C and D and the components of GAM are re-ordered so that the
boundary conditions are in the order:

(i) conditions on y(a) only;
(ii) condition involving y(a) and y(b); and
(iii) conditions on y(b) only.

The routine will be slightly more efficient if the arrays C, D and GAM are ordered in this
way before entry, and in this event they will be unchanged on exit.

Note that the problems (1) and (2) must be of boundary value type, that is neither C nor D
may be identically zero. Note also that the rank of the matrix [C,D] must be n for the
problem to be properly posed. Any violation of these conditions will lead to an error exit.

10: MNP — INTEGER. Input
On entry: the maximum permitted number of mesh points.
Constraint. MNP 2 32.

11: X(MNP) - real array. Input/ Output
Onentry. if NP 2 4 (see NP below), the first NP elements must define an initial mesh.
Otherwise the elements of x need not be set.

Constraint: A = X(1) < X(2) < ... < X(NP) = B, for NP 2 4. 4)
Onexit: X(1),X(2),...X(NP) define the final mesh (with the returned value of NP)
satisfying the relation (4).

12: Y(N,MNP) - real array. Output
On exit: the approximate solution z(x) satisfying (3), on the final mesh, that is
Y(3ii) = z;(x;), i=12,..,NP;j=12,..n

where NP is the number of points in the final mesh.
The remaining columns of Y are not used.

13: NP - INTEGER. Input/ Output

On entry: determines whether a default mesh or user-supplied mesh is used. If NP = 0, a
default value of 4 for NP and a corresponding equispaced mesh X(1),X(2),....X(NP) are
used. If NP = 4, then the user must define an initial mesh X as in (4) above.

On exit: the number of points in the final (returned) mesh.

14: W(LW) - real array. Workspace
15: LW — INTEGER. Input

On entry: the length of the array W,
Constraint: LW 2 MNPx(3N2+5N+2) + 3N2 + 5N.
16: IW(LIW) — INTEGER array. Workspace
17: LIW — INTEGER. Input
On entry: the length of the array IW.
Constraint: LIW 2 MNPx(2N+1) + N.

[NP1692/14] Page 3

D02GBF DO2 — Ordinary Differential Equations

18: IFAIL — INTEGER. Input/ Output

For this routine, the normal use of IFAIL is extended to control the printing of error and
warning messages as well as specifying hard or soft failure (see Chapter PO1 for details).

Before entry, IFAIL must be set to a value with the decimal expansion cba, where each of
the decimal digits ¢, b and a must have the value O or 1.

a = 0 specifies hard failure, otherwise soft failure;
b = 0 suppresses error messages, otherwise error messages will be printed (see Section 6);

¢ = 0 suppresses warning messages, otherwise warning messages will be printed (see
Section 6).

The recommended value for inexperienced users is 110 (i.e. hard failure with all messages
printed).
Unless the routine detects an error (see Section 6), IFAIL contains 0 on exit.

6. Error Indicators and Warnings
Errors detected by the routine:
For each error, an explanatory error message is output on the current error message unit (as
defined by X04AAF), unless suppressed by the value of IFAIL on entry.
IFAIL = 1
One or more of the parameters N, TOL, NP, MNP, LW or LIW is incorrectly set, B < A or
the condition (4) on X is not satisfied.

IFAIL = 2
There are three possible reasons for this error exit to be taken:
(i) one of the matrices C or D is identically zero (that is the problem is of initial value
and not boundary value type). In this case, IW(1) = O on exit;

(ii) arow of C and the corresponding row of D are identically zero (that is the boundary
conditions are rank deficient). In this case, on exit IW(1) contains the index of the
first such row encountered; and

(iii) more than n of the columns of the n by 2n matrix [C,D] are identically zero (that is
the boundary conditions are rank deficient). In this case, on exit IW(1) contains
minus the number of non-identically zero columns.

IFAIL = 3
The routine has failed to find a solution to the specified accuracy. There are a variety of
possible reasons including:

(i) the boundary conditions are rank deficient, which may be indicated by the message
that the Jacobian is singular. However this is an unlikely explanation for the error
exit as all rank deficient boundary conditions should lead instead to error exits with
either IFAIL = 2 or IFAIL = 5; see also (iv) below;

(ii) not enough mesh points are permitted in order to attain the required accuracy. This
is indicated by NP = MNP on return from a call to DO2GBF. This difficulty may be
aggravated by a poor initial choice of mesh points;

(iii) the accuracy requested cannot be attained on the computer being used; and

(iv) an unlikely combination of values of F(x) has led to a singular Jacobian. The error
should not persist if more mesh points are allowed.

IFAIL = 4

A serious error has occurred in a call to DO2GBF. Check all array subscripts and subroutine
parameter lists in calls to DO2GBF. Seek expert help.

Page 4 [NP1692/14]

D02 - Ordinary Differential Equations D02GBF

IFAIL = 5

There are two possible reasons for this error exit which occurs when checking the rank of
the boundary conditions by reduction to a row echelon form:

(i) atleast one row of the n by 2n matrix [C,D] is a linear combination of the other rows
and hence the boundary conditions are rank deficient. The index of the first such
row encountered is given by IW(1) on exit; and

(ii) as (i) but the rank deficiency implied by this error exit has only been determined up
to a numerical tolerance. Minus the index of the first such row encountered is given
by IW(1) on exit.

In case (ii) above there is some doubt as to the rank deficiency of the boundary conditions.
However even if the boundary conditions are not rank deficient they are not posed in a
suitable form for use with this routine.

For example, if

(19 o=(io 7= ()

and € is small enough, this error exit is likely to be taken. A better form for the boundary
conditions in this case would be

_ (10 _ (10 _ [N
= (0 1)’ b= (0 0), r= (3_1(72"71))

7. Accuracy

The solution returned by the routine will be accurate to the user’s tolerance as defined by the
relation (3) except in extreme circumstances. If too many points are specified in the initial mesh,
the solution may be more accurate than requested and the error may not be approximately
equidistributed.

8. Further Comments

The time taken by the routine depends on the difficulty of the problem, the number of mesh
points (and meshes) used and the number of deferred corrections.

The user is strongly recommended to set IFAIL to obtain self-explanatory error messages, and
also monitoring information about the course of the computation. The user may select the
channel numbers on which this output is to appear by calls of X04AAF (for error messages) or
X04ABF (for monitoring information) — see Section 9 for an example. Otherwise the default
channel numbers will be used, as specified in the implementation document.

In the case where the user wishes to solve a sequence of similar problems, the use of the final
mesh from one case is strongly recommended as the initial mesh for the next.

9. Example
We solve the problem (written as a first order system)
@" + yl = O

with boundary conditions

y(0) =0, y(1) =1
for the cases € = 10~' and £ = 107 using the default initial mesh in the first case, and the final
mesh of the first case as initial mesh for the second (more difficult) case. We give the solution

and the error at each mesh point to illustrate the accuracy of the method given the accuracy
request TOL = 1.0E-3.

Note the call to X04ABF prior to the call to DO2GBF.

[NP1692/14] Page 5

D02GBF DO2 - Ordinary Differential Equations

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO2GBF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER N, MNP, LW, LIW
PARAMETER (N=2,MNP=70, LW=MNP * (3*N*N+5*N+2)+3*N*N+5*N,
+ LIW=MNP* (2*N+1)+N)
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalars in Common ..
real EPS
* .. Local Scalars ..
real A, B, TOL
INTEGER I, IFAIL, J, NP
* .. Local Arrays ..
real C(N,N), D(N,N), GAM(N), W(LW), X(MNP), Y(N,MNP)
INTEGER IW(LIW)
* .. External Subroutines ..
EXTERNAL DO2GBF, FCNF, FCNG, XO04ABF
* .. Common blocks
COMMON EPS
* .. Executable Statements ..

WRITE (NOUT,*) ’'DO2GBF Example Program Results’
TOL = 1.0e-3

NP = 0
A = 0.0e0
B = 1.0e0

CALL X04ABF(1,NOUT)
DO 40 I =1, N
GAM(I) = 0.0e0
DO 20 J =1, N
= Oe0

C(I,J) 0.
0.0e0

D(I,J)
20 CONTINUE
40 CONTINUE
C(1,1)
D(2,1) 1.0e0
GAM(2) 1.0e0
DO 60 I =1, 2
EPS = 10.0e0**(~1I)
WRITE (NOUT, *)
WRITE (NOUT,99999) ’'Problem with epsilon = ’, EPS
* * Set IFAIL to 111 to obtain monitoring information *
IFAIL = 11

1.0e0

CALL DO2GBF (A, B, N, TOL, FCNF, FCNG, C,D, GAM, MNP, X, Y, NP, W, LW, IW, LIW,
+ IFAIL)

WRITE (NOUT, *)
IF (IFAIL.EQ.0) THEN
WRITE (NOUT,99998) ’Approximate solution on final mesh of ’/,

+ NP, ’ points’
WRITE (NOUT,*) ' X(I) Y(1,I)’
WRITE (NOUT,99997) (X(J),¥(1,J),J=1,NP)
ELSE
WRITE (NOUT,99996) ’ IFAIL = ’, IFAIL
STOP
END IF
60 CONTINUE
80 STOP

Page 6 [NP1692/14]

D02 — Ordinary Differential Equations D02GBF

99999 FORMAT (1X,A,el0.2)
99998 FORMAT (1X,A,I2,A)
99997 FORMAT (1X,2F11.4)
99996 FORMAT (1X,A,I3)

END
*
SUBROUTINE FCNF (X, F)
* .. Parameters
INTEGER N
PARAMETER (N=2)
* .. Scalar Arguments
real X
* .. Array Arguments
real F(N,N)
* .. Scalars in Common ..
real EPS
* .. Common blocks ..
COMMON EPS
* .. Executable Statements
F(1,1) = 0.0e0
F(1,2) =1

F(2,1) = 0.0e0
F(2,2) = -1.0e0/EPS

RETURN
END
*
SUBROUTINE FCNG(X,G)
* .. Parameters
INTEGER N
PARAMETER (N=2)
* .. Scalar Arguments
real X
* .. Array Arguments
real G(N)
* .. Executable Statements

G(1l) = 0.0e0
G(2) = 0.0e0
RETURN

END

9.2. Program Data
None.

9.3. Program Results
DO2GBF Example Program Results
Problem with epsilon = 0.10E+00

Approximate solution on final mesh of 15 points

X(I) Y(1,I)
0.0000 0.0000
0.0278 0.2425
0.0556 0.4263
0.1111 0.6708
0.1667 0.8112
0.2222 0.8917
0.2778 0.9379
0.3333 0.9644
0.4444 0.9883
0.5556 0.9962
0.6667 0.9988
0.7500 0.9995
0.8333 0.9998
0.9167 0.9999
1.0000 1.0000

[NP1692/14] Page 7

D02GBF

Page 8

Problem with epsilon =

0.10E-01

D02 - Ordinary Differential Equations

Approximate solution on final mesh of 49 points

[EReNoNoNoNoNoloNololoNoloNololeoNoloNololo e Nololoe ool oo loNololeo e e Ne o oleNoloNeNo o NeNo N

X(I)

.0000
.0009
.0019
.0028
.0037
.0046
.0056
.0065
.0074
.0083
.0093
.0111
.0130
.0148
.0167
.0185
.0204
.0222
.0241
.0259
.0278
.0306
.0333
.0361
.0389
.0417
.0444
.0472
.0500
.0528
.0556
.0648
.0741
.0833
.0926
.1019
L1111
.1389
.1667
.2222
.2778
.3333
.4444
.5556
.6667
.7500
.8333
.9167
.0000

Y(1,I)
.0000
.0884
.1690
.2425
.3095
.3706
L4262
.4770
.5232
.5654
.6038
.6708
.7265
L7727
.8111
.8431
.8696
.8916
.9100
.9252
.9378
.9529
.9643
.9730
.9795

[l ol Sl Sl el el el el ol ol e ool oo oo NoNolo oo ololo o oo o oo oo ool oloNo o oo oo Ne]

[NP1692/14]

D02 - Ordinary Differential Equations DO02GBF

With IFAIL set to 111 in the example program, monitoring information similar to the following
is printed when £ = 107':

DO2GBF MONITORING INFORMATION
NUMBER OF POINTS IN CURRENT MESH = 15

CORRECTION NUMBER 0 ESTIMATED MAXIMUM ERROR = 6.59E-02
ESTIMATED ERROR BY COMPONENTS

6.57E-03 6.59E-02
NUMBER OF POINTS IN CURRENT MESH = 15

CORRECTION NUMBER 1 ESTIMATED MAXIMUM ERROR = 3.60E-03
ESTIMATED ERROR BY COMPONENTS

3.61E-04 3.60E-03
NUMBER OF POINTS IN CURRENT MESH = 15

CORRECTION NUMBER 2 ESTIMATED MAXIMUM ERROR = 4.36E-04
ESTIMATED ERROR BY COMPONENTS
4.45E-05 4.36E-04

[NP1692/14] Page 9 (last)

D02 - Ordinary Differential Equations DO02HAF

DO2HAF — NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

DO2HAF solves the two-point boundary-value problem for a system of ordinary differential equations,
using a Runge-Kutta-Merson method and a Newton iteration in a shooting and matching technique.

2 Specification

SUBROUTINE DO2HAF(U, V, N, A, B, TOL, FCN, SOLN, Mi, W, IV, IFAIL)

INTEGER N, M1, IW, IFAIL
real U(N,2), V(N,2), A, B, TOL, SOLN(N,M1), W(N,IW)
EXTERNAL FCN

3 Description

DO2HATF solves the two-point boundary-value problem for a system of n ordinary differential equations
in the range a,b. The system is written in the form:

y§=f.‘(-’ﬂ,y1,y2a--~,yn)y i=1,2,...,ﬂ (1)
and the derivatives f; are evaluated by a subroutine FCN supplied by the user. Initially, n boundary
values of the variables y; must be specified, some of which will be specified at a and some at b. The user
must supply estimates of the remaining n boundary values (called parameters below), and the subroutine
corrects them by a form of Newton iteration. It also calculates the complete solution on an equispaced
mesh if required.

Starting from the known and estimated values of y; at a, the subroutine integrates the equations from a to
b (using a Runge-Kutta-Merson method). The differences between the values of y; at b from integration
and those specified initially should be zero for the true solution. (These differences are called residuals
below.) The subroutine uses a generalized Newton method to reduce the residuals to zero, by calculating
corrections to the estimated boundary values. This process is repeated iteratively until convergence is
obtained, or until the routine can no longer reduce the residuals. See Hall and Watt [1] for a simple
discussion of shooting and matching techniques.

4 References

[1] Hall G and Watt J M (ed.) (1976) Modern Numerical Methods for Ordinary Differential Equations
Clarendon Press, Oxford

5 Parameters

1: U(N,2) — real array Input/Output
On entry: U(i,1) must be set to the known or estimated value of y; at a, and U(i,2) must be set to
the known or estimated value of y; at b, for i =1,2,...,n.

On ezit: the known values unaltered, and corrected values of the estimates, unless an error has
occurred. If an error has occurred, U contains the known values and the latest values of the
estimates.

2: V(N,2) — real array Input
On entry: V(i,j) must be set to 0.0 if U(,) is a known value, and 1.0 if U(7, j) is an estimated
value to be corrected.

Constraint: precisely n of the V(i, j) must be set to 0.0, i.e., precisely n of the U(%, j) must be known
values, and these must not be all at a or all at b.

[NP3086/18] DO2HAF.1

DO02HAF D02 - Ordinary Differential Equations

3: N — INTEGER Input
On entry: the number of equations, n.

Constraint: N > 2

4: A —real Input
On entry: the initial point of the interval of integration, a.

5: B — real Input
On entry: the final point of the interval of integration, b.

6: TOL — real Input

On entry: TOL must be set to a small quantity suitable for

(1) testing the local error in y; during integration,

(2) testing for the convergence of y; at b,

(3) calculating the perturbation in estimated boundary values for y;, which are used to obtain the
approximate derivatives of the residuals for use in the Newton iteration.

The user is advised to check his results by varying TOL.
Constraint: TOL > 0.0.

7: FCN — SUBROUTINE, supplied by the user. Ezternal Procedure
FCN must evaluate the functions f; (i.e., the derivatives y;), for i = 1,2,...,n, at a general point
z.

Its specification is:

SUBROUTINE FCN(X, Y, F)
real X, Y(n), F(n)

where n is the actual value of N on the call of DO2HAF.

1: X —real Input
On entry: the value of the argument, z.
2: Y(n) — real array Input

On entry: the value of the argument y;, for i =1,2,...,n.

3: F(n) — real array Output
On ezit: the valueof f;, z,fori=1,2,...,n.

FCN must be declared as EXTERNAL in the (sub)program from which DO2HAF is called.
Parameters denoted as Input must not be changed by this procedure.

8: SOLN(N,M1) — real array Output
On ezit: the solution when M1 > 1 (see below).

9: M1 — INTEGER Input
On entry: a value which controls output:
Ml=1
the final solution is not evaluated.

Ml>1

the final values of y; at interval (b — a)/(M1—1) are calculated and stored in the array SOLN
by columns, starting with values y; at a stored in SOLN(¢,1), for i = 1,2,...,n.

Constraint: M1 > 1.

DO2HAF.2 [NP3086/18]

D02 - Ordinary Differential Equations DO02HAF

10: W(N,IW) — real array Output

On ezit: if IFAIL = 2, 3, 4 or 5, W(4,1) contains the solution at the point where the integration
fails, for i = 1,2,...,n, and the point of failure is returned in W(1,2).

11: IW — INTEGER Input

On entry: the second dimension of W.

Constraint: IW > 3N + 17 + max(11,N).

12: IFAIL — INTEGER Input/Output

For this routine, the normal use of IFAIL is extended to control the printing of error and warning
messages as well as specifying hard or soft failure (see Chapter P01).

Before entry, IFAIL must be set to a value with the decimal expansion cba, where each of the decimal
digits ¢, b and a must have a value of 0 or 1.

a = 0 specifies hard failure, otherwise soft failure;
b = 0 suppresses error messages, otherwise error messages will be printed (see Section 6);
¢ = 0 suppresses warning messages, otherwise warning messages will be printed (see Section 6).

The recommended value for inexperienced users is 110 (i.e., hard failure with all messages printed).

Unless the routine detects an error (see Section 6), IFAIL contains 0 on exit.

6 Error Indicators and Warnings

For each error, an explanatory error message is output on the current error message unit (as defined by
X04AAF), unless suppressed by the value of IFAIL on entry.

Errors detected by the routine:

IFAIL =1
One or more of the parameters V, N, M1, IW, or TOL is incorrectly set.

IFAIL = 2
The step length for the integration is too short whilst calculating the residual (see Section 8).

IFAIL = 3
No initial step length could be chosen for the integration whilst calculating the residual.

Note: IFAIL = 2 or 3 can occur due to choosing too small a value for TOL or due to choosing
the wrong direction of integration. Try varying TOL and interchanging a and b. These error exits
can also occur for very poor initial estimates of the unknown initial values and, in extreme cases,
because this routine cannot be used to solve the problem posed.

IFAIL = 4

As for IFAIL = 2 but the error occurred when calculating the Jacobian of the derivatives of the
residuals with respect to the parameters.

IFAIL =5

As for IFAIL = 3 but the error occurred when calculating the derivatives of the residuals with
respect to the parameters.

IFAIL = 6

The calculated Jacobian has an insignificant column.

Note: IFAIL = 4, 5 or 6 usually indicate a badly scaled problem. The user may vary the size of
TOL or change to one of the more general routines DO2HBF or DO2SAF which afford more control
over the calculations.

[NP3086/18] DO02HAF.3

DO02HAF D02 - Ordinary Differential Equations

IFAIL = 7
The linear algebra routine (FO2WEF) used has failed. This error exit should not occur and can
be avoided by changing the estimated initial values.

IFAIL = 8
The Newton iteration has failed to converge.

Note: IFAIL = 8 can indicate poor initial estimates or a very difficult problem. Consider varying
TOL if the residuals are small in the monitoring output. If the residuals are large try varying the
initial estimates.

IFAIL = 9, 10, 11,12 or 13

Indicate that a serious error has occurred in D02SAZ, D02SAW, D02SAX, D02SAU or D02SAV
respectively. Check all array subscripts and subroutine parameter lists in calls to DO2HAF. Seek
expert help.

7 Accuracy

If the process converges, the accuracy to which the unknown parameters are determined is usually close
to that specified by the user; the solution, if requested, may be determined to a required accuracy by
varying the parameter TOL.

8 Further Comments

The time taken by the routine depends on the complexity of the system, and on the number of iterations
required. In practice, integration of the differential equations is by far the most costly process involved.

Wherever it occurs in the routine, the error parameter TOL is used in ‘mixed’ form; that is TOL always
occurs in expressions of the form TOL x (1+4|y;|). Though not ideal for every application, it is expected
that this mixture of absolute and relative error testing will be adequate for most purposes.

The user is strongly recommended to set IFAIL to obtain self-explanatory error messages, and also
monitoring information about the course of the computation. The user may select the channel numbers
on which this output is to appear by calls of X04AAF (for error messages) or X04ABF (for monitoring
information) — see Section 9 for an example. Otherwise the default channel numbers will be used,
as specified in the implementation document. The monitoring information produced at each iteration
includes the current parameter values, the residuals and two norms: a basic norm and a current norm.
At each iteration the aim is to find parameter values which make the current norm less than the basic
norm. Both these norms should tend to zero as should the residuals. (They would all be zero if the exact
parameters were used as input.) For more details, the user may consult the specification of D02SAF, and
especially the description of the parameter MONIT there.

The computing time for integrating the differential equations can sometimes depend critically on the
quality of the initial estimates. If it seems that too much computing time is required and, in particular, if
the values of the residuals printed by the monitoring routine are much larger than the expected values of
the solution at b, then the coding of the subroutine FCN should be checked for errors. If no errors can be
found, an independent attempt should be made to improve the initial estimates. In practical problems it
is not uncommon for the differential equation to have a singular point at one or both ends of the range.
Suppose a is a singular point; then the derivatives y; in (1) (in Section 3) cannot be evaluated at a, usually
because one or more of the expressions for f; give overflow. In such a case it is necessary for the user to
take a a short distance away from the singularity, and to find values for y; at the new value of a (e.g. use
the first one or two terms of an analytical (power series) solution). The user should experiment with the
new positon of a; if it is taken too close to the singular point, the derivatives f; will be inaccurate, and
the routine may sometimes fail with IFAIL = 2 or 3 or, in extreme cases, with an overflow condition. A
more general treatment of singular solutions is provided by the subroutine DO2HBF.

Another difficulty which often arises in practice is the case when one end of the range, b say, is at
infinity. The user must approximate the end-point by taking a finite value for b, which is obtained by
estimating where the solution will reach its asymptotic state. The estimate can be checked by repeating
the calculation with a larger value of b. If b is very large, and if the matching point is also at b, the

DO2HAF .4 [NP3086/18]

D02 - Ordinary Differential Equations DO02HAF

numerical solution may suffer a considerable loss of accuracy in integrating across the range, and the
program may fail with IFAIL = 6 or 8. (In the former case, solutions from all initial values at a are
tending to the same curve at infinity.) The simplest remedy is to try to solve the equations with a smaller
value of b, and then to increase b in stages, using each solution to give boundary value estimates for the
next calculation. For problems where some terms in the asymptotic form of the solution are known,
DO02HBF will be more successful.

If the unknown quantities are not boundary values, but are eigenvalues or the length of the range or some
other parameters occurring in the differential equations, DO2HBF may be used.

9 Example

To find the angle at which a projectile must be fired for a given range.

The differential equations are:

y = tan¢
, —0.032tan¢ 0.02v
o= -
v cos ¢
—0.032
¥ o= =

with the following boundary conditions:
y=0, v=05 at z=0,
y=0 at z=25.
The remaining boundary conditions are estimated as:

=115 at z=0,

¢=12, v=046 at z=3.

We write y = Z(1), v= Z(2), ¢ = Z(3). To check the accuracy of the results the problem is solved twice
with TOL = 5.0E—3 and 5.0E—4 respectively. Note the call to X04ABF before the call to DO2HAF.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* DO2HAF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* . Parameters ..
* N.B the definition of IW must be changed for N.GT.11
INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER N, IW, M1
PARAMETER (N=3,IW=3%N+17+11 ,M1=6)
* .. Local Scalars .
real TOL, X, X1
INTEGER I, IFAIL, J, L
* .. Local Arrays ..
real U(N,2), V(N,2), W(N,IW), Y(N,6M1)
* .. External Subroutines .
EXTERNAL DO2HAF, DERIV, X04ABF
* .. Executable Statements ..

WRITE (NOUT,*) ’DO2HAF Example Program Results’
CALL XO04ABF(1,NOUT)

[NP3086/18] DO2HAF.5

DO02HAF

20

40

99999
99998
99997

D02HAF.6

DO 40 L = 3, 4

TOL = 5.0e0%10.0e0**(-L)

WRITE (NOUT,*)

WRITE (NOUT,99999) ’Results with TOL =

U(1,1) = 0.0e0
V(1,1) = 0.0e0

U(1,2) = 0.0e0

V(1,2) = 0.0e0

U(2,1) = 0.5e0

v(2,1) = 0.0e0

U(2,2) = 0.46€0
v(2,2) = 1.0e0

U(3,1) = 1.15€0
vV(3,1) = 1.0e0

U(3,2) = -1.2e0
V(3,2) = 1.0e0

X = 0.0e0

X1 = 5.0e0

* Set IFAIL to 111 to obtain monitoring information *

IFAIL = 11

CALL DO2HAF(U,V,N,X,X1,TOL,DERIV,Y,M1,W,IW,IFAIL)

WRITE (NOUT,*)

IF (IFAIL.EQ.O) THEN
WRITE (NOUT,*) ’ X-value and final solution’
DO 201 =1, M1
WRITE (NOUT,99998) I - 1, (Y(3,1),J=1,N)

CONTINUE

ELSE

WRITE (NOUT,99997) °’ IFAIL =’, IFAIL

END IF
CONTINUE
STOP

FORMAT (1X,A,e10.3)
FORMAT (1X,I3,3F10.4)

FORMAT (1X,A,I4)

END

SUBROUTINE DERIV(X,Z,G)

.. Parameters ..
INTEGER N
PARAMETER (N=3)
. Scalar Arguments ..
real X
.. Array Arguments ..
real G(N), zZ(N)
. Intrinsic Functions .
INTRINSIC C0sS, TAN
. Executable Statements ..
G(1) = TAN(Z(3))
G(2) =

G(3)
RETURN
END

-0.032e0*TAN(Z(3))/Z(2) - 0.02e0%2(2)/C0S(Z(3))
-0.032e0/Z(2)**2

D02 - Ordinary Differential Equations

[NP3086/18]

D02 - Ordinary Differential Equations

9.2 Program Data

None.

9.3 Program Results

DO2HAF Example Program Results

Results with TOL =

X-value
0 0
i 1
2 2
3 2
4 2
5 -

.0000
.9172
.9293
.9762
.0177
0.

and final

O OO O OO0

0088

Results with TOL =

X-value
0 0
1 1
2 2
3 2
4 2
5 0

.0000
L9177
.9280
.9769
.0210
.0000

and final

OO OO0 O0OOo

0.500E-02
solution
.5000 1.1680
.3343 0.9746
. 2067 0.4916
.1956 -0.4214
.3099 -0.9756
.4602 -1.2020

0.500E-03
solution
.5000 1.1681
.3343 0.9749
.2070 0.4929
.1955 -0.4194
.3095 -0.9751
.4597 -1.2014

DO02HAF

[NP3086/18]

DO2HAF.7 (last)

D02 - Ordinary Differential Equations DO02HBF

DO02HBF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

DO2HBF solves the two-point boundary-value problem for a system of ordinary differential equations,
using initial value techniques and Newton iteration; it generalises subroutine DO2HAF to include the case
where parameters other than boundary values are to be determined.

2 Specification

SUBROUTINE DO2HBF(P, N1, PE, E, N, SOLN, Mi, FCN, BC, RANGE, W,
1 IW, IFAIL)

INTEGER N1, N, M1, IW, IFAIL
real P(N1), PE(N1), E(N), SOLN(N,M1), W(N,IW)
EXTERNAL FCN, BC, RANGE

3 Description

DO02HBF solves the two-point boundary-value problem by determining the unknown parameters
P1,P2s- -1 Py, Of the problem. These parameters may be, but need not be, boundary values; they
may include eigenvalue parameters in the coefficients of the differential equations, length of the range of
integration, etc. The notation and methods used are similar to those of DO2HAF and the user is advised to
study this first. (The parameters p;,p,, ..., p,, correspond precisely to the unknown boundary conditions
in DO2HAF.) It is assumed that we have a system of n first-order ordinary differential equations of the
form:

4y,

dr
and that the derivatives f; are evaluated by a subroutine FCN supplied by the user. The system, including
the boundary conditions given by BC and the range of integration given by RANGE, involves the n,;
unknown parameters p,,p,, - - -, p,, Which are to be determined, and for which initial estimates must be
supplied. The number of unknown parameters n, must not exceed the number of equations n. If n; < n,
we assume that (n — n,) equations of the system are not involved in the matching process. These are
usually referred to as ‘driving equations’; they are independent of the parameters and of the solutions of
the other n, equations. In numbering the equations for the subroutine FCN, the driving equations must
be put first.

=fi(x)y1)y2:"'1yn)7 i=112)"';n;

The estimated values of the parameters are corrected by a form of Newton iteration. The Newton
correction on each iteration is calculated using a Jacobian matrix whose (7, j)th element depends on the
derivative of the ith component of the solution, y;, with respect to the jth parameter, p;. This matrix is
calculated by a simple numerical differentiation technique which requires n; evaluations of the differential
system.

If the parameter IFAIL is set appropriately, the routine automatically prints messages to inform the user
of the flow of the calculation. These messages are discussed in detail in Section 8.

DO2HBF is a simplified version of D02SAF which is described in detail in Gladwell [1].

4 References

[1] GladwellI (1979) The development of the boundary value codes in the ordinary differential equations
chapter of the NAG Library Codes for Boundary Value Problems in Ordinary Differential Equations.
Lecture Notes in Computer Science (ed B Childs, M Scott, J W Daniel, E Denman and P Nelson)

76 Springer-Verlag

[NP3086/18] D02HBF .1

D02HBF D02 - Ordinary Differential Equations

5 Parameters

Users are strongly recommended to read Section 3 and Section 8 in conjunction with this section.

1:

P(N1) — real array Input/Output
On entry: an estimate for the ith parameter, p;, fori=1,2,...,n4.

On ezit: the corrected value for the ith parameter, unless an error has occurred, when it contains
the last calculated value of the parameter.

N1 — INTEGER Input
On entry: the number of parameters, n,.
Constraint: 1 < N1 < N.

PE(N1) — real array Input
On entry: the elements of PE must be given small positive values. The element PE(i) is used

(i) in the convergence test on the ith parameter in the Newton iteration, and
(i) in perturbing the ith parameter when approximating the derivatives of the components of the
solution with respect to this parameter for use in the Newton iteration.

The elements PE(i) should not be chosen too small. They should usually be several orders of
magnitude larger than machine precision.

Constraint: PE(i) > 0.0, for i =1,2,...,NL

E(N) — real array Input

On entry: the elements of E must be given positive values.The element E(4) is used in the bound
on the local error in the ith component of the solution y; during integration.

The elements E(i) should not be chosen too small. They should usually be several orders of
magnitude larger than machine precision.

Constraint: E(i) > 0.0, for i=1,2,...,N.
N — INTEGER Input
On entry: the total number of differential equations, n.

Constraint: N > 2.

SOLN(N,M1) — real array Output
On ezit: the solution when M1 > 1 (see below).

M1 — INTEGER Input
On entry: a value which controls exit values as follows:
Ml=1
The final solution is not calculated;
Ml>1

The final values of the solution at interval (length of range)/(M1—1) are calculated and stored
sequentially in the array SOLN starting with the values of the solutions evaluated at the first
end-point (see subroutine RANGE below) stored in the first column of SOLN.

Constraint: M1 > 1.

DO2HBF.2 [NP3086/18]

D02 - Ordinary Differential Equations DO02HBF

8: FCN — SUBROUTINE, supplied by the user. Ezternal Procedure

FCN must evaluate the function f; (i.e., the derivative y;), for i =1,2,...,n.

Its specification is:

1:

SUBROUTINE FCN(X, Y, F, P)
real X, Y(n), F(n), P(n1)

where n and nl are the actual values of N and N1 in the call of DO2HBF.

X — real Input
On entry: the value of the argument z.

Y(n) — real array Input
On entry: the value of the argument y;, for: = 1,2,...,n.

F(n) — real array Output
On erit: the value of f;, for i = 1,2,...,n. The f; may depend upon the parameters p;, for
j=1,2,...,n,. If there are any driving equations (see Section 3) then these must be numbered
first in the ordering of the components of F in FCN.

P(nl) — real array Input
On entry: the current estimate of the parameter p;, fori =1,2,...,n,.

FCN must be declared as EXTERNAL in the (sub)program from which DO2HBF is called.
Parameters denoted as Input must not be changed by this procedure.

9: BC — SUBROUTINE, supplied by the user. External Procedure
BC must place in G1 and G2 the boundary conditions at a and b respectively (see RANGE below).

Its specification is:

1:

SUBROUTINE BC(G1i, G2, P)
real G1(n), G2(n), P(n1)

where n and nl are the actual values of N and N1 in the call of DO2HBF.

G1l(n) — real array Output
On ezit: the value of y;(a), (where this may be a known value or a function of the parameters
p;, for j = 1,2,...,n,);¢1=1,2,...,n.

G2(n) — real array Output
On ezxit: the value of y;(b), for i = 1,2,...,n, (where these may be known values or functions
of the parameters p;, for j =1,2,...,n;). If n > n,, so that there are some driving equations,
then the first n — n, values of G2 need not be set since they are never used.

P(nl) — real array Input
On entry: an estimate of the parameter p;, for i = 1,2,...,n,.

BC must be declared as EXTERNAL in the (sub)program from which DO2HBF is called. Parameters
denoted as Input must not be changed by this procedure.

[NP3086/18] DO2HBF.3

DO02HBF D02 - Ordinary Differential Equations

10:

RANGE — SUBROUTINE, supplied by the user. Erternal Procedure

RANGE must evaluate the boundary points a and b, each of which may depend on the parameters
P1,Pa, - - -, Pp,- The integrations in the shooting method are always from a to b.

Its specification is:

SUBROUTINE RANGE(A, B, P)
real A, B, P(ni1)

where nl is the actual value of N1 in the call of DO2HBF.

1: A — real Output
On ezit: one of the boundary points, a.
2: B —real Output

On ezit: the second boundary point, b. Note that B > A forces the direction of integration to
be that of increasing X. If A and B are interchanged the direction of integration is reversed.

3: P(nl) — real array Input
On entry: the current estimate of the ith parameter, p;, fori=1,2,...,n,.

11:

12:

13:

6

RANGE must be declared as EXTERNAL in the (sub)program from which DO2HBF is called.
Parameters denoted as Input must not be changed by this procedure.

W(N,IW) — real array Output
Used mainly for workspace.

On ezit: with IFAIL = 2, 3, 4 or 5 (see Section 6), W(i, 1), for i = 1,2,...,n contains the solution
at the point £ when the error occurred. W(1,2) contains z.

IW — INTEGER Input

On entry: the second dimension of the array W as declared in the (sub)program from which DO2HBF
is called.

Constraint: IW > 3N + 14 + max(11,N).

IFAIL — INTEGER Input/Output

For this routine, the normal use of IFAIL is extended to control the printing of error and warning
messages as well as specifying hard or soft failure (see Chapter P01).

Before entry, IFAIL must be set to a value with the decimal expansion cba, where each of the decimal
digits ¢, b and a must have a value of 0 or 1.

a = 0 specifies hard failure, otherwise soft failure;
b = 0 suppresses error messages, otherwise error messages will be printed (see Section 6);
¢ = 0 suppresses warning messages, otherwise warning messages will be printed (see Section 6).

The recommended value for inexperienced users is 110 (i.e., hard failure with all messages printed).

Unless the routine detects an error (see Section 6), IFAIL contains 0 on exit.

Error Indicators and Warnings

For each error, an explanatory error message is output on the current error message unit (as defined by
X04AAF), unless suppressed by the value of IFAIL on entry.

Errors detected by the routine:

DO2HBF .4 [NP3086/18]

D02 - Ordinary Differential Equations DO02HBF

IFAIL = 1
One or more of the parameters N, N1, M1, IW, E or PE is incorrectly set.

IFAIL = 2
The step length for the integration became too short whilst calculating the residual (see Section
8).

IFAIL = 3

No initial step length could be chosen for the integration whilst calculating the residual.

Note: IFAIL = 2 or 3 can occur due to choosing too small a value for E or due to choosing the
wrong direction of integration. Try varying E and interchanging a and b. These error exits can
also occur for very poor initial choices of the parameters in the array P and, in extreme cases,
because this routine cannot be used to solve the problem posed.

IFAIL = 4
As for IFAIL = 2 but the error occurred when calculating the Jacobian.

IFAIL =5
As for IFAIL = 3 but the error occurred when calculating the Jacobian.

IFAIL = 6

The calculated Jacobian has an insignificant column. This can occur because a parameter p; is
incorrectly entered when posing the problem.

Note: IFAIL = 4, 5 or 6 usually indicate a badly scaled problem. The user may vary the size of PE.
Otherwise the use of the more general DO2SAF which affords more control over the calculations is
advised.

IFAIL = 7
The linear algebra routine used (FO2WEF) has failed. This error exit should not occur and can
be avoided by changing the initial estimates p;.

IFAIL = 8
The Newton iteration has failed to converge. This can indicate a poor initial choice of parameters
p; or a very difficult problem. Consider varying the elements PE(7) if the residuals are small in
the monitoring output. If the residuals are large, try varying the initial parameters p;.

IFAIL = 9, 10, 11, 12 or 13

Indicate that a serious error has occurred in D02SAZ, D02SAW, D02SAX, D02SAU or D02SAV
respectively. Check all array subscripts and subroutine parameter lists in the call to DO2HBF.
Seek expert help.

7 Accuracy

If the process converges, the accuracy to which the unknown parameters are determined is usually close
to that specified by the user; and the solution, if requested, may be determined to a required accuracy
by varying the parameter E.

8 Further Comments

The time taken by the routine depends on the complexity of the system, and on the number of iterations
required. In practice, integration of the differential equations is by far the most costly process involved.

Wherever they occur in the routine, the error parameters contained in the arrays E and PE are used in
‘mixed’ form; that is E() always occurs in expressions of the form

E(@) x (1+ |y;)

[NP3086/18] DO2HBF.5

DO02HBF D02 - Ordinary Differential Equations

and PE(7) always occurs in expressions of the form
PE(i) x (1+ |p:l)

Though not ideal for every application, it is expected that this mixture of absolute and relative error
testing will be adequate for most purposes.

The user may determine a suitable direction of integration a to b and suitable values for E(i) by
integrations with DO2PCF. The best direction of integration is usually the direction of decreasing
solutions. The user is strongly recommended to set IFAIL to obtain self-explanatory error messages,
and also monitoring information about the course of the computation. The user may select the channel
numbers on which this output is to appear by calls of X04AAF (for error messages) or X04ABF (for
monitoring information) — see Section 9 for an example. Otherwise the default channel numbers will
be used, as specified in the implementation document. The monitoring information produced at each
iteration includes the current parameter values, the residuals and two norms: a basic norm and a current
norm. At each iteration the aim is to find parameter values which make the current norm less than the
basic norm. Both these norms should tend to zero as should the residuals. (They would all be zero if
the exact parameters were used as input.) For more details, in particular about the other monitoring
information printed, the user is advised to consult the specification of DO2SAF and, especially, the
description of the parameter MONIT there.

The computing time for integrating the differential equations can sometimes depend critically on the
quality of the initial estimates for the parameters p;. If it seems that too much computing time is
required and, in particular, if the values of the residuals printed by the monitoring routine are much
larger than the expected values of the solution at b then the coding of the subroutines FCN, BC and
RANGE should be checked for errors. If no errors can be found, an independent attempt should be made
to improve the initial estimates for p;.

The subroutine can be used to solve a very wide range of problems, for example:
(a) eigenvalue problems, including problems where the eigenvalue occurs in the boundary conditions;

(b) problems where the differential equations depend on some parameters which are to be determined
so as to satisfy certain boundary conditions (see example (ii) in Section 9);

(c) problems where one of the end-points of the range of integration is to be determined as the point
where a variable y; takes a particular value (see example (ii) in Section 9);

(d) singular problems and problems on infinite ranges of integration where the values of the solution at
a or b or both are determined by a power series or an asymptotic expansion (or a more complicated
expression) and where some of the coefficients in the expression are to be determined (see example
(1) in Section 9); and

(e) differential equations with certain terms defined by other independent (driving) differential
equations.

9 Example

For this routine two examples are presented, in Section 9.1 and Section 9.2. In the example programs
distributed to sites, there is a single example program for DO2HBF, with a main program:

* DO2HBF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. External Subroutines .
EXTERNAL EX1, EX2
* .. Executable Statements ..
WRITE (NOUT,*) ’DO2HBF Example Program Results’
CALL EX1
CALL EX2
STOP
END

DO2HBF.6 [NP3086/18]

D02 - Ordinary Differential Equations DO02HBF

The code to solve the two example problems is given in the subroutines EX1 and EX2, in Section 9.1.1
and Section 9.2.1 respectively.

9.1 Examplel

To find the solution of the differential equation
yll - (y3 _ y’)/?z

on the range 0 < z < 16, with boundary conditions y(0) = 0.1 and y(16) = 1/6. We cannot use the
differential equation at z = 0 because it is singular, so we take a truncated power series expansion

y(z) =1/10+ p, x /z/10+ z/100

near the origin where p, is one of the parameters to be determined. We choose the interval as [0.1,16]
and setting p, = y'(16), we can determine all the boundary conditions. We take X1 = 16. We write y
= Y(1), ¥ = Y(2), and estimate PARAM(1) = 0.2, PARAM(2) = 0.0. Note the call to X04ABF before
the call to DO2HBF.

9.1.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

SUBROUTINE EX1
* .. Parameters .
INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER N, Ni, IW, M1
PARAMETER (N=2,N1=2,IW=3%N+14+11,M1=6)
* .. Local Scalars ..
real H, X, X1
INTEGER I, IFAIL, J
* .. Local Arrays ..
real C(N,M1), ERROR(N), PARAM(N1), PARERR(N1), W(N,IW)
* .. External Subroutines ..
EXTERNAL AUX1, BCAUX1, DO2HBF, RNAUX1, XO04ABF
* .. Intrinsic Functioms ..
INTRINSIC real
* .. Executable Statements .
WRITE (NOUT,*)
WRITE (NOUT,*)
WRITE (NOUT,*) ’Case 1’
CALL XO04ABF(1,NOUT)
PARAM(1) = 0.2e0
PARAM(2) = 0.0e0
PARERR(1) = 1.0e-5
PARERR(2) = 1.0e-3
ERROR(1) = 1.0e-4
ERROR(2) = 1.0e-4
* * Set IFAIL to 111 to obtain monitoring information *
IFAIL = 11

CALL DO2HBF(PARAM,N1,PARERR,ERROR,N,C,M1,AUX1,BCAUX1,RNAUX1,W,]IW,
+ IFAIL)

WRITE (NOUT,*)
IF (IFAIL.NE.O) THEN

[NP3086/18] DO2HBF.7

DO02HBF

20

99999
99998
99997
99996

D02HBF .8

D02 - Ordinary Differential Equations

WRITE (NOUT,99999) ’'IFAIL = ’, IFAIL
IF (IFAIL.LE.5 .AND. IFAIL.NE.1) THEN

WRITE (NOUT,*)

WRITE (NOUT,99996) ’W(1,2) = ’, W(1,2), ’ W(.,1) =7,

(W(1,1),I=1,N)

END IF

ELSE

WRITE (NOUT,*) ’'Final parameters’

WRITE (NOUT,99998) (PARAM(I),I=1,N1)
WRITE (NOUT,*)
WRITE (NOUT,*) ’'Final solution’

WRITE (NOUT,*) ’X-value
CALL RNAUX1(X,X1,PARAM)
H = (X1-X)/real(M1i-1)

DO 20I =1, M1

CONTINUE

END IF
RETURN

SUBROUTINE RNAUX1(X,X1,PARAM)
. Scalar Arguments ..

SUBROUTINE BCAUX1(G,G1,PARAM)

FORMAT (1X,A,I3)
FORMAT (1X,1P,3e15.3)
FORMAT (1X,F7.2,2F13.4)
FORMAT (1X,A,F9.4,A,10e10.3)
END

SUBROUTINE AUX1(X,Y,F,PARAM)

Components of solution’

WRITE (NOUT,99997) X + (I-1)=*H, (c(J,I),J=1,N)

F(N), PARAM(N), Y(N)

real X, X1
. Array Arguments .

real PARAM(2)
. Executable Statements ..

X = 0.1e0

X1 = 16.0e0

RETURN

END

.. Parameters ..
INTEGER N

PARAMETER
. Array Arguments ..

real

(N=2)

. Parameters ..
INTEGER N
PARAMETER (N=2)

. Scalar Arguments ..
real X

. Array Arguments ..
real

. Executable Statements ..
F(1) = Y(2)
F(2) = (Y(1)**3-Y(2))/(2.0e0%X)
RETURN
END

G(N), G1(N), PARAM(N)

[NP3086/18]

D02 - Ordinary Differential Equations D02HBF

* .. Local Scalars ..
real YA
* .. Intrinsic Functioms ..
INTRINSIC SQRT
* .. Executable Statements ..
Z =0.1e0
G(1) 0.1e0 + PARAM(1)*SQRT(Z)*0.1e0 + 0.01e0%*Z

G(2) = PARAM(1)*0.05€0/SQRT(Z) + 0.01e0
G1(1) = 1.0e0/6.0e0

G1(2) = PARAM(2)

RETURN

END

9.1.2 Program Data

None.

9.1.3 Program Results

DO2HBF Example Program Results

Case 1

Final parameters
4.629E-02 3.494E-03

Final solution

X-value Components of solution
0.10 0.1025 0.0173
3.28 0.1217 0.0042
6.46 0.1338 0.0036
9.64 0.1449 0.0034

12.82 0.1557 0.0034
16.00 0.1667 0.0035

9.2 Example 2

To find the gravitational constant p; and the range p, over which a projectile must be fired to hit the
target with a given velocity.

The differential equations are

Yy =tané¢

o = —(p, sin ¢ + 0.00002v?)
a v cos @
_"h

¢ =5

on the range 0 < z < p,, with boundary conditions

y=0, v=500, ¢=05 atz=0,
y=0, v=450, ¢=p; atz=p,

We write y = Y(1), v = Y(2), ¢ = Y(3). We estimate p, = PARAM(1) = 32, p, = PARAM(2) = 6000
and p; = PARAM(3) = 0.54 (though this last estimate is not important).

[NP3086/18] DO02HBF.9

D02HBF D02 - Ordinary Differential Equations

9.2.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

%*
SUBROUTINE EX2

* .. Parameters ..

INTEGER NOUT

PARAMETER (NOUT=6)

INTEGER N, N1, IW, M1

PARAMETER (N=3,N1=3,IW=3*N+14+11,M1=6)
* .. Local Scalars ..

real H, X, X1

INTEGER I, IFAIL, J
* .. Local Arrays .

real C(N,M1), ERROR(N), PARAM(N1), PARERR(N1), W(N,IW)
* .. External Subroutines ..

EXTERNAL AUX2, BCAUX2, DO2HBF, RNAUX2, XO04ABF
* .. Intrinsic Functions ..

INTRINSIC real
* .. Executable Statements ..

WRITE (NOUT,*)
WRITE (NOUT,*)
WRITE (NOUT,*) ’Case 2’
CALL XO04ABF(1,NOUT)
PARAM(1) = 32.0e0
PARAM(2) 6000.0e0
PARAM(3) 0.54e0
PARERR(1) 1.0e-5
PARERR(2) 1.0e-4
PARERR(3) 1.0e-4
ERROR(1) = 1.0e-2
ERROR(2) 1.0e-2
ERROR(3) = 1.0e-2

* * Set IFAIL to 111 to obtain monitoring information *
IFAIL = 11

CALL DO2HBF(PARAM,N1,PARERR,ERROR,N,C,6M1,AUX2,BCAUX2,RNAUX2,W, IV,
+ IFAIL)

WRITE (NOUT,*)
IF (IFAIL.NE.O) THEN
WRITE (NOUT,99999) ’IFAIL = °’, IFAIL
IF (IFAIL.LE.5 .AND. IFAIL.NE.1) THEKN
WRITE (NOUT,*)
WRITE (NOUT,99996) ’'W(1,2) = ’, W(1,2), * W(.,1) =,
+ (w(1,1),I=1,K)
END IF
ELSE
WRITE (NOUT,*) ’Final parameters’
WRITE (NOUT,99998) (PARAM(I),I=1,N1)
WRITE (NOUT,=*)
WRITE (NOUT,*) ’Final solution’
WRITE (NOUT,*) ’X-value Components of solution’
CALL RNAUX2(X,X1,PARAM)
H = (X1-X)/real(M1-1)
DO 20I =1, M1
WRITE (NOUT,99997) X + (I-1)=*H, (€(J,I),J=1,N)

DO2HBF.10 [NP3086/18]

D02 - Ordin

20

99999
99998
99997
99996

[NP3086/18]

ary Differential Equations

CONTINUE
END IF
RETURN

FORMAT (1X,A,I3)

FORMAT (1X,1P,3e15.3)

FORMAT (1X,F7.0,2F13.1,F13.3)
FORMAT (1X,A,F9.4,A,10e10.3)
END

SUBROUTINE AUX2(X,Y,F,PARAM)
. Parameters ..
INTEGER N
PARAMETER (N=3)
. Scalar Arguments ..
real X
.. Array Arguments ..
real F(N), PARAM(K), Y(N)
. Intrinsic Functions .
INTRINSIC C0S, TAN
.. Executable Statements ..
F(1) = TAN(Y(3))
F(2) -PARAM(1)*TAN(Y(3))/Y(2) - 0.00002e0*Y(2)/C0S(Y(3))
F(3) =-PARAM(1)/Y(2)**2
RETURN
END

SUBROUTINE RNAUX2(X,X1,PARAM)

.. Parameters .
INTEGER N
PARAMETER (N=3)
. Scalar Arguments ..
real X, X1
. Array Arguments ..
real PARAM(N)
. Executable Statements ..
X = 0.0e0
X1 = PARAM(2)
RETURN
END

SUBROUTINE BCAUX2(G,G1,PARAM)
. Parameters ..

INTEGER N

PARAMETER (N=3)
. Array Arguments ..

real G(N), G1(N), PARAM(N)
. Executable Statements ..

G(1) = 0.0e0

G(2) 500.0e0

G(3) = 0.5€0

G1(1) 0.0e0

G1(2) 450.0e0

G1(3) = PARAM(3)

RETURN

END

DO02HBF

DO02HBF.11

D02HBF

9.2.2 Program Data

None.

9.2.3 Program Results

Case 2

Final parameters
3.239E+01

Final solution

X-value
0.
1192.
2385.
3577.
4769.
5962.

Components of solution
500.
451.
420.
409.
420.
450.

0.0
529.6
807.2
820.4
566.1

0.0

5.962E+03

0

OO wWwo

-5.3563E-

01

.500
.328
.123
.103
.330
.5356

D02 - Ordinary Differential Equations

DO2HBF.12 (last)

[NP3086/18]

D02 - Ordinary Differential Equations D02JAF

D02JAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

DO2JAF solves a regular linear two-point boundary value problem for a single nth order ordinary
differential equation by Chebyshev-series using collocation and least-squares.

Specification
SUBROUTINE DO2JAF (N, CF, BC, X0, X1, K1, KP, C, W, LW, IW, IFAIL)
INTEGER N, K1, KP, LW, IW(K1), IFAIL
real CF, X0, X1, C(K1), W(LW)
EXTERNAL CF, BC
Description

This routine calculates the solution of a regular two-point boundary value problem for a single
nth order linear ordinary differential equation as a Chebyshev-series in the range (xo.x,). The
differential equation

For @YD @) + £y () + o+ f1)Y(X) = fo(x)
is defined by the user-supplied function CF, and the boundary conditions at the points x, and x,
are defined by the user-supplied subroutine BC.

The user specifies the degree of Chebyshev-series required, K1 — 1, and the number of
collocation points, KP. The routine sets up a system of linear equations for the Chebyshev
coefficients, one equation for each collocation point and one for each boundary condition. The
boundary conditions are solved exactly, and the remaining equations are then solved by a
least-squares method. The result produced is a set of coefficients for a Chebyshev-series solution
of the differential equation on a range normalised to the range (=1,1).

E02AKF can be used to evaluate the solution at any point on the range (x,.x,) — see Section 9
for an example. E02AHF followed by EO2AKF can be used to evaluate its derivatives.

References

[1] PICKEN, S.M.
Algorithms for the solution of differential equations in Chebyshev-series by the selected
points method.
Report Math. 94, National Physical Laboratory, Teddington, 1970.

Parameters

N - INTEGER. Input
On entry: the order n of the differential equation.
Constraint: N 2 1.

CF - real FUNCTION, supplied by the user. External Procedure

CF defines the differential equation (see Section 3). It must return the value of a function
f;(x) at a given point x, where, for 1 < j < n + 1, f;(x) is the coefficient of yU (x) in
the equation, and f, (x) is the right-hand side.

Its specification is:

real FUNCTION CF(J, X)
INTEGER J
real X

[NP1692/14) Page 1

DO02JAF D02 - Ordinary Differential Equations

I: J - INTEGER. Input
On entry: the index of the function f; to be evaluated.
2: X —real Input

On entry: the point at which f; is to be evaluated.

CF must be declared as EXTERNAL in the (sub)program from which DO2JAF is called.
Parameters denoted as /nput must not be changed by this procedure.

3: BC — SUBROUTINE, supplied by the user. External Procedure
BC defines the boundary conditions, each of which has the form y*~V(x,) = s, or
y* ™ (x,) = s,. The boundary conditions may be specified in any order.
Its specification is:

SUBROUTINE BC(I, J, RHS)
INTEGER I,J

real RHS
1: I - INTEGER. Input
On entry: the index of the boundary condition to be defined.
2: J — INTEGER. Output

Onexit: J must be set to —k if the boundary condition is y*~" (x,) = s,, and to
+kif itis y* ™ (x,) = s,,
J must not be set to the same value & for two different values of I.

3: RHS - real. Output
On exit: RHS must be set to the value s,.

BC must be declared as EXTERNAL in the (sub)program from which DO2JAF is called.
Parameters denoted as /nput must not be changed by this procedure.

4 X0 - real. Input
50 X1 — real. Input

Onentry: the left- and right-hand boundaries, x, and x,, respectively.
Constraint: X1 > X0,

6 K1 — INTEGER. Input

On entry: the number of coefficients to be returned in the Chebyshev-series representation of
the solution (hence the degree of the polynomial approximation is K1 — 1).

Constraint: K1 2 N + 1.

7: KP — INTEGER. Input
On entry: the number of collocation points to be used.
Constraint: KP 2 K1 - N.

8: C(K1) - real array. Output
On exit: the computed Chebyshev coefficients; that is, the computed solution is:

K1
2'CU) T ()

i=1
where T; (x) is the ith Chebyshev polynomial of the first kind, and ¥’ denotes that the first
coefficient, C(1), is halved.

Page 2 [NP1692/14)

D02 - Ordinary Differential Equations D02JAF

11:

12:

W(LW) — real array. Workspace
LW — INTEGER. Input

On entry: the dimension of the array W as declared in the (sub)program from which
DO2JAF is called.

Constraint: LW 2 2x(KP+N)x(K1+1) + 7xKI1.

IW (K1) — INTEGER array. Workspace

IFAIL — INTEGER. Input/ Output

On entry: TFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

IFAIL =1
On entry, N < 1,
or X0 2 X1,
or Kl <N +1,
or KP < K1 — N.
IFAIL = 2

On entry LW < 2x(KP+N)x(K1+1) + 7xKl (insufficient workspace).

IFAIL = 3

Either the boundary conditions are not linearly independent (that is, in the subroutine BC
the variable j is set to the same value k for two different values of i), or the rank of the
matrix of equations for the coefficients is less than the number of unknowns. Increasing KP
may overcome this problem.

IFAIL = 4

The least-squares routine FO4AMF has failed to correct the first approximate solution (see
the routine document for FO4AMF).

Accuracy

The Chebyshev coefficients are determined by a stable numerical method. The accuracy of the
approximate solution may be checked by varying the degree of the polynomial and the number of
collocation points (see Section 8).

Further Comments

The time taken by the routine depends on the complexity of the differential equation, the degree
of the polynomial solution, and the number of matching points.

The collocation points in the range (x,.x,) are chosen to be the extrema of the appropriate
shifted Chebyshev polynomial. If KP = K1 — N, then the least-squares solution reduces to the
solution of a system of linear equations, and true collocation results. The accuracy of the solution
may be checked by repeating the calculation with different values of K1 and with KP fixed but
KP » K1 — N. If the Chebyshev coefficients decrease rapidly (and consistently for various K1
and KP), the size of the last two or three gives an indication of the error. If the Chebyshev
coefficients do not decay rapidly, it is likely that the solution cannot be well-represented by
Chebyshev-series. Note that the Chebyshev coefficients are calculated for the range (-1,1).

[NP1692/14] Page 3

DO02JAF DO02 — Ordinary Differential Equations

9.1.

Page 4

Systems of regular linear differential equations can be solved using DO2JBF. It is necessary
before using this routine to write the differential equations as a first order system. Linear systems
of high order equations in their original form, singular problems, and, indirectly, nonlinear
problems can be solved using DO2TGF.

Example
To solve the equation
y+y=1

with boundary conditions
y(=1) =y(1) =0.
We use K1 = 4,6,8 and KP = 10 and 15, so that the different Chebyshev-series may be

compared. The solution for K1 = 8 and KP = 15 is evaluated by E02AKF at 9 equally spaced
points over the interval (-1,1).

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denot precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

*

DO2JAF Example Program Text
Mark 14 Revised. NAG Copyright 1989.

*

* .. Parameters ..
INTEGER N, KIMAX, KPMAX, LW
PARAMETER (N=2,K1MAX=8,KPMAX=15,LW=2*(KPMAX+N)*(KlMAX+1)
+ +7*K1MAX)
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Local Scalars ..
real X, X0, X1, Y
INTEGER I, IAl, IFAIL, K1, KP, M
* .. Local Arrays
real C(K1MAX), W(LW)
INTEGER IW(K1MAX)
* .. External Subroutines ..
EXTERNAL BC, CF, DO2JAF, EO2AKF
* .. Intrinsic Functions ..
INTRINSIC real
* .. Executable Statements ..
WRITE (NOUT,*) ’‘DO2JAF Example Program Results’
X0 = ~1.0e0
X1 = 1.0e0

WRITE (NOUT, x)
WRITE (NOUT,*) ’ KP K1 Chebyshev coefficients’
DO 40 KP = 10, KPMAX, 5
DO 20 K1 = 4, KIMAX, 2
IFAIL = 1

CALL DOZJAF(N,CF,BC,XO,XI,KI,KP,C,W,LW,IW,IFAIL)

IF (IFAIL.NE.Q) THEN
WRITE (NOUT,99999) KP, K1, ’ DO2JAF fails with IFAIL =,
+ IFAIL
STOP
ELSE
WRITE (NOUT,99998) KP, K1, (C(I),I=1,Kl)
END IF
20 CONTINUE
40 CONTINUE
Kl = 8
M=29
IAl =1
WRITE (NOUT, %)

[NP1692/14)

D02 - Ordinary Differential Equations

60

99999
99998
99997
99996

DO02JAF

WRITE (NOUT, 99997) ’Last computed solution evaluated at’, M,

+ ' equally spaced points’

WRITE (NOUT, *)

WRITE (NOUT,*) ' X Y’

DO 60 I =1, M
X = (XO*real(M-I)+X1lx*real(I-1))/real(M-1)
IFAIL = 0

CALL EO2AKF(K1,X0,X1,C,IAl,KI1MAX,X,Y,IFAIL)

WRITE (NOUT,99996) X, Y
CONTINUE
STOP

FORMAT (1X,2(I3,1X),A,I4)
FORMAT (1X,2(I3,1X),8F8.4)
FORMAT (1X,A,I3,A)

FORMAT (1X,2F10.4)

END

real FUNCTION CF(J,X)
.. Scalar Arguments
real X
INTEGER J
. Executable Statements

IF (J.EQ.2) THEN

CF = 0.0e0
ELSE

CF = 1.0e0
END IF
RETURN
END

SUBROUTINE BC(I,J,RHS)
. Scalar Arguments

real RHS
INTEGER I, J
. Executable Statements ..
RHS = 0.0e0
IF (I.EQ.1l) THEN
J =1
ELSE
J = -1
END IF
RETURN
END

9.2. Program Data

None.

9.3. Program Results
DO2JAF Example Program Results

[NP1692/14]

K1l Chebyshev coefficients
4 -0.6108 0.0000 0.3054 .0000
6 -0.8316 .0000 0.4246
8 -0.8325 .0000 0.4253
4 -0.6174 .0000 0.3087
6 -0.8316 .0000 0.4246
8

-0.8325 .0000 0.4253

.0000

QOO0 O
[oNeNoNoNoNe)

.0000 -0.0088 0.0000
.0000 -0.0092 0.0000

.0000 -0.0088 0.0000
.0000 -0.0092 0.0000

0.0001

0.0001

0.0000

0.0000

Page 5

DO02JAF

D02 - Ordinary Differential Equations

Last computed solution evaluated at 9 equally spaced points

X
-1.0000
-0.7500
-0.5000
-0.2500

0.0000
0.2500
0.5000
0.7500
1.0000

Y

0.0000
-0.3542
-0.6242
-0.7933
—-0.8508
-0.7933
-0.6242
-0.3542

0.0000

Page 6 (last)

[NP1692114)

D02 — Ordinary Differential Equations D02JBF

DO02JBF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

DO2JBF solves a regular linear two-point boundary value problem for a system of ordinary
differential equations by Chebyshev-series using collocation and least-squares.

2. Specification
SUBROUTINE DO2JBF (N, CF, BC, X0, X1, K1, Kp, C, IC, W, LW, IW, LIW,

1 IFAIL)

INTEGER N, K1, KP, IC, LW, IW(LIW), LIW, IFAIL
real CF, X0, X1, C(IC,N), W(LW)

EXTERNAL CF, BC

3. Description

This routine calculates the solution of a regular two-point boundary value problem for a regular
linear nth order system of first order ordinary differential equations in Chebyshev-series in the
range (x,,x,). The differential equation

Yy =A@y + r(x)
is defined by the user-supplied function CF and the boundary conditions at the points x, and x,
are defined by the user-supplied routine BC (see Section 5).
The user specifies the degree of the Chebyshev-series required, K1 — 1, and the number of
collocation points, KP. The routine sets up a system of linear equations for the Chebyshev
coefficients, n equations for each collocation point and one for each boundary condition. The
boundary conditions are solved exactly, and the remaining equations are then solved by a
least-squares method. The result produced is a set of coefficients for a Chebyshev-series solution
for each component of the solution of the system of differential equations on a range normalised
to (-1,1).
E02AKF can be used to evaluate the components of the solution at any point on the interval
(x9,X,) — see Section 9 for an example. EO2AHF followed by E02AKF can be used to evaluate
their derivatives.

4. References

[1] PICKEN, S.M.
Algorithms for the solution of differential equations in Chebyshev-series by the selected
points method.
Report Math. 94, National Physical Laboratory, Teddington, Middlesex, 1970.

5. Parameters

1: N - INTEGER. Input
On entry: the order of the system of differential equations, n.
Constraint: N 2 1.

2: CF — real FUNCTION, supplied by the user. External Procedure

CF defines the system of differential equations (see Section 3). It must return the value of
a coefficient function a;;(x), of A, at a given point x, or of a right-hand side function r, (x)
if] =0.

[NP1692/14] Page 1

D02JBF

D02 — Ordinary Differential Equations

Its specification is:

real FUNCTION CF(I, J, X)

INTEGER I, J
real X
1: I - INTEGER. Input
2: J — INTEGER. Input
On entry: indicate the function to be evaluated, namely a,;(x)if1 £J <n, or
r.(x)ifJ = 0.
1<I<n0<J<n
33 X —real Input

On entry: the point at which the function is to be evaluated.

CF must be declared as EXTERNAL in the (sub)program from which DO2JBF is called.
Parameters denoted as Input must not be changed by this procedure,

3: BC — SUBROUTINE, supplied by the user. External Procedure

BC defines the n boundary conditions, which have the form Ye(xg) = sory.(x;) =s.
The boundary conditions may be specified in any order.

Its specification is:

SUBROUTINE BC(I, J, RHS)

INTEGER I,J
real RHS
1: I - INTEGER. Input
On entry: the index of the boundary condition to be defined.
2: J - INTEGER. Output

On exit: J must be set to —k if the ith boundary condition is Yie(Xo) = s,0rto +k
ifitis y,(x;) = s.
J must not be set to the same value & for two different values of I.

3: RHS - real. Output
On exit: the value s.

BC must be declared as EXTERNAL in the (sub)program from which DO2JBF is called.
Parameters denoted as Inpur must not be changed by this procedure.

4 X0 —real. Input
50 X1 - real. Input

On entry: the left- and right-hand boundaries, x, and X, repectively.
Constraint: X1 > X0.

6: KI — INTEGER. Input

On entry: the number of coefficients to be returned in the Chebyshev-series representation of
the components of the solution (hence the degree of the polynomial approximation is
K1 - 1).

Constraint: K1 2 2.

7: KP — INTEGER. Input

Page 2

On entry: the number of collocation points to be used.
Constraint: KP 2 K1 — 1.

[NP1692/14]

D02 - Ordinary Differential Equations DO02JBF

8:

10:
11:

12:
13:

14:

C(IC,N) — real array. QOutput

On exit: the computed Chebyshev coefficients of the kth component of the solution, y,; that
is, the computed solution is:

K1
Y = 2/ CURT,_, (%), 1<ksn
i=]
where T (x) is the ith Chebyshev polynomial of the first kind, and Y’ denotes that the first
coefficient, C(1,k), is halved.

IC - INTEGER. Input

On entry: the first dimension of the array C as declared in the (sub)program from which
DO2JBF is called.

Constraint: IC 2 K1.

W(LW) — real array. Workspace
LW - INTEGER. Input

Onentry: the dimension of the array W as declared in the (sub)program from which
DO2JBF is called.

Constraint: LW 2 2xNx(KP+1)x(NxK1+1) + 7xNxK1.

IW(LIW) — INTEGER array. Workspace
LIW — INTEGER. Input

Onentry: the dimension of the array IW as declared in the (sub)program from which
DO2JBF is called.

Constraint: LIW 2 Nx(K1+2).

IFAIL - INTEGER. Input/ Output

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

IFAIL = 1
On entry, N < 1,
or X0 2 X1,
or K1l < 2,
or KP < K1 -1,
or IC < Kl1.
IFAIL = 2
On entry, LW < 2xNx(KP+1)x(NxK1+1) + 7xNxKI,
or LIW < Nx(K1+2) (i.e. insufficient workspace).
IFAIL = 3

Either the boundary conditions are not linearly independent, (that is, in the subroutine BC
the variable J is set to the same value k for two different values of I), or the rank of the
matrix of equations for the coefficients is less than the number of unknowns. Increasing KP
may overcome this latter problem.

IFAIL = 4

The least-squares routine FO4AMF has failed to correct the first approximate solution (see
routine document FO4AMF).

[NP1692/14] Page 3

DO02JBF D02 — Ordinary Differential Equations

7. Accuracy

The Chebyshev coefficients are determined by a stable numerical method. The accuracy of the
approximate solution may be checked by varying the degree of the polynomials and the number
of collocation points (see Section 8).

8. Further Comments

The time taken by the routine depends on the size and complexity of the differential system, the
degree of the polynomial solution and the number of matching points.

The collocation points in the range (x,,.x,) are chosen to be the extrema of the appropriate
shifted Chebyshev polynomial. If KP = K1 — 1, then the least-squares solution reduces to the
solution of a system of linear equations and true collocation results.

The accuracy of the solution may be checked by repeating the calculation with different values of
K1 and with KP fixed but KP > K1 — 1. If the Chebyshev coefficients decrease rapidly for
each component (and consistently for various K1 and KP), the size of the last two or